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Abstract

The advent of the Internet and Open Source Software led to the emergence
of the software ecosystems, consisting of a large number of interconnected
software projects. In order to keep a trace of the relations between the different
parts of a software ecosystem, one solution is to divide the ecosystem in
different components, such as packages, and use dedicated software to manage
the relationships between them. While component manager software helps
both users and developers dealing with relationships such as dependencies
and conflicts, it has its own kind of maintainability issues.

The goal of this thesis is to understand how dependency relations be-
tween software components, which are maintained by different people, impact
software maintainability issues. By understanding how constraints on compo-
nents can detect, prevent or reduce these issues, tools can be built to provide
support for maintainer and user communities of component-based ecosystems
and distributions.

Using two case studies, the Debian and R ecosystems, we

1. Define a conceptual framework in order to be able to extract data from
different component repositories, analyze it to study maintainability
issues, and interpret the results;

2. Use this framework to understand dependency relationships between
components and how to better deal with them;

3. Present a tool for supporting developer and user communities of com-
ponent-based software ecosystems.





Résumé

L’avènement d’Internet et des logiciels open source a mené à l’émergence
des écosystèmes logiciels qui consistent en de nombreux projets logiciels
interconnectés. Pour garder une trace des relations entre les différents projets
d’un écosystème logiciel, une solution est de diviser l’écosystème en différents
composants, telles que des paquets, et d’utiliser un logiciel spécialisé pour
gérer les relations entre composants. Bien que des logiciels gestionnaires
de composants aident à la fois les utilisateurs et développeurs à gérer les
relations tels que dépendances et conflits, ils ont leur propres problèmes de
maintenances.

Le but de cette thèse est de comprendre comment les relations de dépen-
dances entre composants logiciels, maintenus par différentes personnes, im-
pactent les problèmes de maintenabilité logicielle. En comprenant comment
les contraintes sur des composants peuvent détecter, empêcher or réduire ces
problèmes, des outils peuvent être construits pour fournir un support pour les
mainteneurs et utilisateurs de communautés d’écosystèmes et de distribution
de composants.

Sur base de deux cas d’utilisation, les écosystèmes Debian et R, nous

1. définissons un framework conceptuel pour extraire des données pro-
venant de différents dépôts de paquets, les analyser pour étudier les
problèmes de maintenabilité et interpréter les resultats;

2. utilisons ce framework pour comprendre les relations de dépendances
entre composants et comment les gérer;

3. présentons un outil pour supporter les communautés de développeurs
et utilisateurs d’écosystèmes logiciels basés sur des composants.





Contents

1 Introduction 1
1.1 Research Context . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Free, Libre and Open Source Software . . . . . . . . . 2
1.1.2 Software Ecosystems . . . . . . . . . . . . . . . . . . . 3

1.2 Problem overview . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Issues in component-based software ecosystems . . . . 7

1.3 Thesis statement . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 State of the Art 13
2.1 Software Evolution and Ecosystems . . . . . . . . . . . . . . . 14
2.2 Component-based Software Ecosystems . . . . . . . . . . . . . 23

2.2.1 Identifying and retrieving dependency information . . . 23
2.2.2 Satisfying dependencies and conflicts . . . . . . . . . . 24
2.2.3 Component upgrade . . . . . . . . . . . . . . . . . . . 25
2.2.4 Inter-project cloning . . . . . . . . . . . . . . . . . . . 25

3 Selected Case Studies 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Debian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 A Conceptual Framework for Analyzing Package-based Soft-
ware Ecosystems 33
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Data extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5 Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

ix



4.6 Data representation . . . . . . . . . . . . . . . . . . . . . . . . 41
4.6.1 Debian control files . . . . . . . . . . . . . . . . . . . . 42
4.6.2 R DESCRIPTION files . . . . . . . . . . . . . . . . . . 42
4.6.3 CUDF . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6.4 devtools remotes . . . . . . . . . . . . . . . . . . . . . 43
4.6.5 Output formats . . . . . . . . . . . . . . . . . . . . . . 44

4.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.7.1 Debian . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.7.2 R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Addressing Co-Installability Issues in the Debian Ecosystem 47
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.1 Mining Strong Conflicts . . . . . . . . . . . . . . . . . 49
5.2.2 Research Questions . . . . . . . . . . . . . . . . . . . . 51

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.1 Overall Characterization . . . . . . . . . . . . . . . . . 51
5.3.2 How can we identify potentially problematic packages? 57
5.3.3 How long does it take before a strong conflict is intro-

duced in a package? . . . . . . . . . . . . . . . . . . . 61
5.3.4 What is the effect of strong conflicts on the longevity

of packages? . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . 70
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Analyzing the Topology of the R Ecosystem 73
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3.1 Topology of major R package distributions . . . . . . . 77
6.3.2 To which extent do R package developers distribute

their packages on GitHub? . . . . . . . . . . . . . . . . 81
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . 87
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7 Analyzing the Maintainability of R Packages 91
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.2.1 R CMD check and flavors . . . . . . . . . . . . . . . . 93



7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.3.1 What is the source of errors in CRAN packages, and

how are these errors fixed? . . . . . . . . . . . . . . . . 97
7.3.2 How long does it take to fix an error? . . . . . . . . . . 99
7.3.3 Which CRAN packages are more frequently updated? . 99

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . 103
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8 Analyzing Code Cloning in CRAN Packages 107
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . 109
8.2.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.2.3 Type-1 function clone extraction . . . . . . . . . . . . 114

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.3.1 Observed Clone Cases . . . . . . . . . . . . . . . . . . 114
8.3.2 How prevalent are clones in CRAN? . . . . . . . . . . . 116
8.3.3 Why did clones appear? . . . . . . . . . . . . . . . . . 118
8.3.4 Is it possible to remove clones? How? . . . . . . . . . . 120

8.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . 122
8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9 maintaineR: a Dashboard for Analyzing Maintainability Is-
sues 125
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
9.2 Overall architecture . . . . . . . . . . . . . . . . . . . . . . . . 127
9.3 Tool presentation . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.3.1 Historical view . . . . . . . . . . . . . . . . . . . . . . 129
9.3.2 Package dependency . . . . . . . . . . . . . . . . . . . 131
9.3.3 Namespaces . . . . . . . . . . . . . . . . . . . . . . . . 131
9.3.4 Function clones . . . . . . . . . . . . . . . . . . . . . . 132

9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

10 Conclusion 135
10.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
10.2 Generalizability . . . . . . . . . . . . . . . . . . . . . . . . . . 138
10.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

10.3.1 Package extraction . . . . . . . . . . . . . . . . . . . . 141
10.3.2 Identifying distributed GitHub R packages . . . . . . . 143
10.3.3 Identifying errors in R packages . . . . . . . . . . . . . 143



10.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
10.4.1 Empirical study extension . . . . . . . . . . . . . . . . 144
10.4.2 Tooling . . . . . . . . . . . . . . . . . . . . . . . . . . 144
10.4.3 Future topics of research . . . . . . . . . . . . . . . . . 145



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .CHAPTER 1
Introduction

With the advent of the Internet and Open Source Software, people living
all across the world started working together to build software artifacts
at a scale never seen before. This led to the emergence of the so-called
software ecosystems consisting of a large number of interconnected software
projects [117]. In order to keep a trace of the relations between the different
parts of a software ecosystem and limit the increase of complexity these
relations could generate, one solution is to divide the ecosystems in different
components, such as packages, and use a piece of software to manage the
relationships between them. While component manager software helps both
users and developers dealing with relationships such as dependencies and
conflicts, it has its own kind of maintainability issues.

This introductory chapter presents this research context and how the thesis
contributes to solving maintainability issues in open source component-based
software ecosystems.

This chapter is partly inspired by our book chapter “Inter-component
Dependency Issues in Software Ecosystems” [34].



Chapter 1. Introduction

1.1 Research Context

The advent of the Internet and Open Source Software led to the emergence of
software ecosystems, consisting of a large number of interconnected software
projects. In order to keep a trace of the relations between the different parts
of a software ecosystem, one solution is to divide the ecosystem in different
components, such as packages, and use a piece of software to manage the
relationships between them. This thesis dissertation lies at the intersection
of multiple domains of study: open source software development, repository
mining, software evolution and component-based software development. In
this first section we present these research domains.

1.1.1 Free, Libre and Open Source Software

In this dissertation we focus on the study of Free, Libre and Open Source
Software. The main reason for this is the availability of the source code in
online repositories. Very often these repositories also contain the development
history alongside other data related to development activity such as issue
trackers and mailing lists.

While Free, Libre and Open Source Software (FLOSS) was a common
practice in the early days of computing, things started to change in the 1970s
with the increasing cost of software development. Software manufacturers
started to distribute software under restrictive licenses. With the appearance
of the Internet and the World Wide Web in the 1980s and then its spread in
the 1990s, the free software movement started to appear as a reaction to the
limits imposed to software users by software manufacturers.

Different definitions of what FLOSS is exist. The term free software was
first coined by Richard Stallman in 1985 in the GNU Manifesto [143]; he
founded the same year the Free Software Foundation (FSF). In 1986 free
software was defined with four basic liberties:

• Freedom 0: The freedom to run the program for any purpose.

• Freedom 1: The freedom to study how the program works, and change
it to make it do what you wish.

• Freedom 2: The freedom to redistribute copies so you can help your
neighbor.

• Freedom 3: The freedom to improve the program, and release your
improvements (and modified versions in general) to the public, so that
the whole community benefits.
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1.1. Research Context

Following the publication of Eric Raymond’s The Cathedral and the Ba-
zaar [134] and the release of the source code for Netscape Navigator (the
ancestor of today’s Mozilla Firefox web browser), the term Open Source was
coined to focus on the technical aspects of FLOSS rather than its ethical
ones. It led to the creation of the Open Source Initiative (OSI) in 1998 and
the Open Source Definition [127]. It has been acknowledged that definitions
of free and open source software are equivalent in most cases [142], thus
differences between the two terms are mainly philosophical.

It is important to note that the term free software is ambiguous as free has
two meanings in English: it can relate to both gratuity and freedom. Because
of that the term Libre Software, inspired from French and Spanish, has also
been employed since the beginning of the 2000s to resolve this ambiguity.
Similarly the term FLOSS has been employed to avoid taking sides in the
debate between the FSF and the OSI.

Even though we acknowledge that software ecosystems would not be
possible without the ethical aspect of libre software, in the context of this
dissertation we are mainly interested in the technical aspects of FLOSS. Thus
in the remainder of the dissertation we will solely use the term Open Source.

1.1.2 Software Ecosystems

This dissertation focuses on a particular type of open source software: compo-
nent-based software ecosystems. Software ecosystem is a term that appeared
during the last decade in the fields of software evolution and software repository
mining. While no consensus exists on what a software ecosystem is, multiple
definitions have been proposed by researchers. In this dissertation we will
stick to the one proposed by Lungu [104, 105] who said that a software
ecosystem is “a collection of software projects which are developed and evolve
together in the same environment”. Other definitions have been proposed by
researchers [78,79,109] and will be presented in more detail in Chapter 2

There are multiple well-known examples of open source software ecosys-
tems:

• The GNU project aims at providing a fully Open Source operating
system. It consists of many smaller software projects each providing a
piece of that operating system.

• Linux is a kernel originally designed for the GNU operating system.
While not technically an ecosystem as it is a single project, it contains
thousands of drivers which form an ecosystem.
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Chapter 1. Introduction

• Gnome and KDE both provide to users a desktop environment for
operating systems such as GNU/Linux and derivatives of BSD.

• The Apache Foundation is a community of developers gathered around
the Apache License. It develops and maintains many software projects
such as the well-known Apache HTTP Server.

The research work presented in this dissertation was funded by a research
project “Ecological Studies of Open Source Software Ecosystems”. This
dissertation focuses on a particular type of software ecosystem where each
project is distributed as one or multiple distinct components. A component
can be for example a package or a plugin, and often shares some kinds
of relationships with other components of the ecosystem. One of these
relationships are dependencies that require a package to only work in the
presence of another package.

All the previously mentioned software ecosystems are not component-
based ecosystems. While the software projects composing them may share
some dependency relationships, in particular between end-user programs
and libraries, it is not trivial to know which they are. Moreover, each
software project generally consists of a source code repository, which may
contain multiple components. While builds might be available for some of
the projects, they will often be distributed alongside their dependencies and
not as independent components.

One example of a component-based software ecosystem is Debian. It
is a large collection of software programs distributed through its package
manager APT. It is most particularly known as one of the oldest GNU/Linux
distributions still being actively maintained. It is important to note that
software projects distributed in Debian are not necessarily developed and
maintained by Debian’s developers. For example, Debian contains packages
for most of the software projects developed in the previously mentioned
ecosystems. The role of Debian package developers is to bundle appropriate
versions of the different software projects in packages and make sure that
these are stable enough in the specific context of a user’s workspace, taking
into account the other thousands of packages that she may have installed.

Other examples of package-based software ecosystems include collections
of library packages for programming languages, like CRAN for R, CPAN for
Perl, npm for JavaScript ’s Node.js, PyPI for Python or OPAM for OCaml.

Apart from a package-based software ecosystems, other software ecosys-
tems make use of components such as plug-ins (e.g., the Eclipse software
development environment [159]), modules (e.g., the NetBeans software devel-
opment environment), libraries [48], extensions and add-ons (e.g. the Firefox
web browser), and mobile app stores [12,120].
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1.2. Problem overview

1.2 Problem overview

This section presents different types of issues related to inter-component
dependencies that can happen during the development and evolution of
components of a software ecosystem. We provide a common vocabulary of the
inter-component dependency relationships we are interested in and discuss
the possible problems caused by such inter-dependencies.

1.2.1 Terminology

Several researchers have proposed general models to study inter-component
dependencies [41, 61, 106]. Based on these models, we use the following
vocabulary to describe the different types of inter-component relationships
that are relevant.

Components act as the basic software unit that can be added, removed
or upgraded in the software system. They provide the right level of granularity
at which a user can manipulate available software. Components are typi-
cally organized in coherent collections called distributions, repositories or
archives. The set of components of a distribution that is actually used by a
particular user is called its component status. To modify the component
status, for example by upgrading existing components or installing new ones,
the user typically relies on a tool that is called the component manager.
This manager uses component metadata in order to derive the context
in which components may or may not be used. Examples of such metadata
are component dependencies and conflicts. Component dependencies
represent positive requirements (a component needs to be present for the
proper functioning of another component), while component conflicts repre-
sent negative requirements (e.g., certain components or component versions
cannot be used in combination). One of the most generic ways to express
dependencies (though not supported by every component manager) is by
means of a conjunction of disjunctions, allowing a choice of which component
can satisfy a dependency. A component’s reverse dependencies are the
components that depend on it.

Figure 1.1 provides two concrete examples of how component dependencies
and conflicts can be specified for packages in the Debian and R ecosystems,
respectively. The Debian package xul-ext-adblock-plus depends on one of the
three packages iceweasel, icedove or iceape. This is expressed by a disjunction
(vertical bar |) of packages. The package conflicts with mozilla-firefox-adblock.
The R package SciViews depends on a version of R greater or equal to 2.6 as
well as on packages stats, grDevices, graphics, MASS and ellipse. The notion
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Chapter 1. Introduction

of conflicts and the ability to express disjunctions of dependencies are not
explicitly supported by R package metadata.

Package: xul-ext-adblock-plus

Description: Advertisement blocking extension

for web browsers

Source: adblock-plus

Version: 2.1-1+deb7u1

Replaces: adblock-plus (<< 1.1.1-2)

Provides: adblock-plus, iceape-adblock-plus,

icedove-adblock-plus, iceweasel-adblock-plus

Depends: iceweasel (>= 8.0) | icedove (>= 8.0)

| iceape (>= 2.5)

Enhances: iceape, icedove, iceweasel

Conflicts: mozilla-firefox-adblock

Package: SciViews

Title: SciViews GUI API - Main package

Imports: ellipse

Depends: R (>= 2.6.0), stats,

grDevices, graphics, MASS

Enhances: base

Version: 0.9-5

Figure 1 provides a concrete example of how component dependencies and conflicts can
be specified for packages in the Debian and R ecosystems, respectively. The Debian package
xul-ext-adblock-plus depends on one of the three packages iceweasel, icedove or iceape. This is
expressed by a disjunction (vertical bar | ) of packages. The package conflicts with mozilla-
firefox-adblock. The R package SciViews depends on version 2.6 of the R language as well
as packages stats, grDevices, graphics and MASS. Note that the notions of conflicts and the
ability to express disjunctions of dependencies are not explicitly supported in the metadata
of R packages.

Package: xul-ext-adblock-plus

Description: Advertisement blocking extension

for web browsers

Source: adblock-plus

Version: 2.1-1+deb7u1

Replaces: adblock-plus (<< 1.1.1-2)

Provides: adblock-plus, iceape-adblock-plus,

icedove-adblock-plus, iceweasel-adblock-plus

Depends: iceweasel (>= 8.0) | icedove (>= 8.0)

| iceape (>= 2.5)

Enhances: iceape, icedove, iceweasel

Conflicts: mozilla-firefox-adblock

Breaks: adblock-plus (<< 1.1.1-2),

iceape (>> 2.13~a1+), iceape (<< 2.5),

icedove (<< 8.0), iceweasel (<< 8.0)

Package: SciViews

Title: SciViews GUI API - Main package

Imports: ellipse

Depends: R (>= 2.6.0), stats,

grDevices, graphics, MASS

Enhances: base

Version: 0.9-5

Figure 1: Two concrete examples of component metadata: [left] for the Debian package
xul-ext-adblock-plus and [right] for the R package SciViews.

Some ecosystems allow dependencies or conflicts to refer to an abstract component.
In that case, the dependency (or conflict) is satisfied (or violated) by each component that
provides features of abstract component.

Tom: Is there an example of this in the figure? If yes, explain (by referring to the fig-
ure)!

Dependencies and conflicts can also be restricted to specific versions of the target com-
ponent. This is usually represented by a constraint on the version number. For example,
in Figure 1 Debian package xul-ext-adblock-plus requires version 8.0 or higher of iceweasel,
while it is incompatible (breaks) with a lower version.

In addition to abstract dependencies and optional dependencies, one can consider the
stage at which they are needed (build-time, testing, installation or run-time) and the way in
which these dependencies are intended to be used (e.g., as stand-alone programs, middleware,
plug-ins or linkable libraries).

Maëlick: Where to talk about the following reference?

Tom: In the subsection where we talk about component dependency graphs.

[27] showed that dependency graphs form a complex network with small-world and scale-
free properties.
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as packages stats, grDevices, graphics and MASS. Note that the notions of conflicts and the
ability to express disjunctions of dependencies are not explicitly supported in the metadata
of R packages.

Package: xul-ext-adblock-plus

Description: Advertisement blocking extension

for web browsers

Source: adblock-plus

Version: 2.1-1+deb7u1

Replaces: adblock-plus (<< 1.1.1-2)

Provides: adblock-plus, iceape-adblock-plus,

icedove-adblock-plus, iceweasel-adblock-plus

Depends: iceweasel (>= 8.0) | icedove (>= 8.0)

| iceape (>= 2.5)

Enhances: iceape, icedove, iceweasel

Conflicts: mozilla-firefox-adblock

Breaks: adblock-plus (<< 1.1.1-2),

iceape (>> 2.13~a1+), iceape (<< 2.5),

icedove (<< 8.0), iceweasel (<< 8.0)

Package: SciViews

Title: SciViews GUI API - Main package

Imports: ellipse

Depends: R (>= 2.6.0), stats,

grDevices, graphics, MASS

Enhances: base

Version: 0.9-5

Figure 1: Two concrete examples of component metadata: [left] for the Debian package
xul-ext-adblock-plus and [right] for the R package SciViews.

Some ecosystems allow dependencies or conflicts to refer to an abstract component.
In that case, the dependency (or conflict) is satisfied (or violated) by each component that
provides features of abstract component.

Tom: Is there an example of this in the figure? If yes, explain (by referring to the fig-
ure)!

Dependencies and conflicts can also be restricted to specific versions of the target com-
ponent. This is usually represented by a constraint on the version number. For example,
in Figure 1 Debian package xul-ext-adblock-plus requires version 8.0 or higher of iceweasel,
while it is incompatible (breaks) with a lower version.

In addition to abstract dependencies and optional dependencies, one can consider the
stage at which they are needed (build-time, testing, installation or run-time) and the way in
which these dependencies are intended to be used (e.g., as stand-alone programs, middleware,
plug-ins or linkable libraries).

Maëlick: Where to talk about the following reference?

Tom: In the subsection where we talk about component dependency graphs.

[27] showed that dependency graphs form a complex network with small-world and scale-
free properties.
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adblock-plus. Right: the R package SciViews.
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Figure 1.1: Two concrete examples of component metadata. Left: the Debian
package xul-ext-adblock-plus. Right: the R package SciViews.

Some ecosystems allow components to depend on, or conflict with, an
abstract component. In that case, the dependency (or conflict) is satisfied
(or violated) by any component that provides features of that abstract
component. For example, in Figure 1.1 the Debian package xul-ext-adblock-pls
provides the features of the following abstract packages: adblock-plus, iceape-
adblock-plus, icedove-adblock-plus, iceweasel-adblock-plus. Any dependency on
adblock-plus would be satisfied if xul-ext-adblock-plus, or any other package
providing adblock-plus, was installed.

Dependencies and conflicts can be restricted to specific versions of the
target component. This is usually represented by a constraint on the version
number. For example, in Figure 1.1 Debian package xul-ext-adblock-plus
requires version 8.0 or higher of iceweasel.

Figure 1.2 shows an example of a graph showing the aforementioned
relationships. Components are visualized by ellipses and abstract components
by diamonds. Edges represent component dependencies and dashed lines
represent component conflicts. Constraints on the component version are
depicted by edge labels. For example, abstract component v depends on two
components c and d that are in mutual conflict. Component f is also in
conflict with version 2.1 or superior of component d. Component e depends
on a version lower than 3.0 of component f.

In addition to abstract dependencies and optional dependencies, one can
consider the stage at which they are needed (build-time, testing, installation
or run-time) and the way in which these dependencies are intended to be used
(e.g., as stand-alone programs, middleware, plug-ins or linkable libraries).
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Figure 1.2: Example of a component dependency graph.

1.2.2 Issues in component-based software ecosystems

Identifying and retrieving dependency information

In package-based ecosystems, each package is generally required to provide
metadata specifying package dependencies. Two examples of this were given
in Figure 1.1. Sometimes, however, the metadata can be incomplete or
inconsistent, or even entirely missing. In particular, constraints on dependency
versions can be missing or inaccurate, because the component metadata is
not always updated if the source code of components has been modified.

Moreover, even when one is able to have an accurate list of dependencies,
it is usually not enough. Indeed, dependencies have their own dependencies
which are consequently indirect dependencies of the initial component one
wants to use. This type of recursive dependencies is known as transitive
dependencies.

Satisfying dependencies and conflicts

Once the dependencies of each component of an ecosystem have been identified,
one needs to verify if they can be satisfied. The presence of dependency
constraints and conflicts can make some dependencies unsatisfiable. Being
unable to satisfy dependencies is generally highly undesirable because it would
prevent a user from using a component.

Even when dependencies of a component can be satisfied, problems may
arise because of conflicts. Conflicts can be declared explicitly in the component
metadata if the format used allows it. However, they can also result from
limits of the system. Indeed, when only one version of a component is allowed
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to be used at the same time, two components can be implicitly in conflict if
they both depend on different versions of the same package.

However, this explicit declaration of dependencies and conflicts is only
the beginning of the story. Even if two packages P and Q do not declare a
conflict, it may very well happen that they cannot be installed together. For
example, P may (strongly) depend on some P2 and Q on some Q2, with P2

and Q2 in declared conflict .
Conflicts may prevent a component to be used in a given context. If

a component is in conflict with one of its strong dependencies, it will be
unusable. When a conflict is declared (directly or indirectly) between two
components, all components that strongly depend on both of them will not
be able to work either. This problem is known for package-based ecosystems
as the problem of co-installability [10, 46, 47,155]. It can be generalized as
the ability for two components to be used together.

We refer to strong conflicts as all components that are known to be
always incompatible together.

It is important to stress that components may be in strong conflict “by
design”: they cannot be installed together because they were never meant
to work together. If this is the case, developers and users can be made
aware of this impossibility by documenting such “known” conflicts explicitly
in the component metadata. An example of this is shown in Figure 1.1,
where package xul-ext-adblock-plus is declared to be in direct conflict with
mozilla-firefox-adblock.

In addition to such known conflicts, new and unexpected strong conflicts
may arise during component evolution without the maintainers being aware
of them. Because this may break an important part of a user system, this
type of undesired strong conflicts are the ones that need to be studied and
for which there is a need to develop tools to detect their cause.

Component upgrade

When developing software components, errors may be inadvertently introduced
when changes occur in the software components one depends upon [1,10,135].
When changes to a component cause the software to fail, it puts a heavy
burden on the maintainers of the components that depend on this failing
component. This is especially true in large ecosystems where thousands of
components are interdependent, and a single failure may affect a large fraction
of the ecosystem [1,75,135].
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Inter-project cloning

One way to avoid problems due to component dependencies could be to
reuse code through copy-paste rather than depending on it. Indeed, some
ecosystems consisting of distributed software for a specific platform do not
allow components to depend one upon another.

Similarly, in ecosystems with inter-component dependencies, developers
may decide to reimplement (part of) a component they need in order to
avoid depending on it. In some cases, the effort needed to reimplement the
component may be smaller than if developers have to fix errors caused by
dependency changes. Especially for open source software, the development
time can be significantly reduced by directly cloning the existing code as
long as it does not violate software licenses. While this may provide an
efficient solution to dependency problems on the short term, it can also
introduce other issues. Indeed it will create software clones between different
components which are known to increase maintainability effort if not managed
properly [83].

1.3 Thesis statement

In the light of all the above, there is a need to understand how dependency
relations between software components, which are maintained by different
people, impact software maintainability issues. By understanding how con-
straints on components can help detect, prevent or reduce these issues, tools
can be built to provide support for maintainer and user communities of
component-based ecosystems and distributions.

The dissertation focuses on the following objectives:

1. Defining a conceptual framework in order to be able to extract data from
different component repositories, analyze it to study maintainability
issues, and interpret the results.

2. Understanding dependency relationships between components and how
to better deal with them.

3. Supporting developer and user communities of component-based soft-
ware ecosystems.

To achieve these goals we study two active and long-lived component-based
software ecosystems. Using our conceptual framework we extract data from
these two ecosystems and empirically analyze it.
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We first study a package distribution for which a lot of effort has been
put on ensuring stability, and for which numerous tools have already been
developed based on previous research. We show how existing tools can discover
problems quickly and how a historical analysis of their results can help to
make new tools or improve existing ones.

Our second and main study relates to the opposite case of a package-based
software ecosystem whose package manager does not make use of previous
results on component-based software ecosystem research. For this case study
we:

• Describe how the ecosystem is structured across multiple repositories
and how this structure impacts studying them;

• Study how dependencies impact the maintainability of the oldest and
biggest repository;

• Study the presence of code duplication inside this repository and give
the proportion of code that could have been avoided by relying upon
dependencies;

• Present a prototype of a web-based dashboard for component main-
tainers reporting to them all the previous results, and how it could be
extended with the help of our conceptual framework to support other
component-based ecosystems.

1.4 Structure

The remainder of this dissertation starts by presenting a state of the art
of the research context in Chapter 2. It presents previous results found in
the scientific literature: generally on software ecosystems, specifically on
component-based software ecosystems and on both Debian and R ecosystems.
Then Chapter 3 present the two case studies used throughout this dissertation.

It is followed by Chapter 4 which presents our conceptual framework for
analyzing component-based software ecosystems. The design of this framework
is driven by the nature of the data required to perform an analysis of issues
in component-based software ecosystems.

Then we present the results of our empirical analysis on two ecosystem
case studies. First, Chapter 5 presents the results of a historical analysis of co-
installability conflicts between Debian packages. We show how fast the Debian
community is generally solving problems caused by co-installability conflicts
but also how our analysis allows to detect additional problems previously
undiscovered by existing tools.
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The remaining chapters present the main results on the empirical analyses
of the R package-based ecosystem. Chapter 6 describes the main different
R package repositories and how they are related to each other. Chapter 7
presents an analysis over more than two years of history of results of the
continuous integration process of CRAN and how dependencies impact pack-
age maintainability. Chapter 8 investigates the problem of identical function
clones inside R packages. Chapter 9 presents the web-based dashboard we
designed to report our results on the R ecosystem to the R community.

Finally chapter 10 concludes by summarizing our main contributions, their
threats and limitations, and future work.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .CHAPTER 2
State of the Art

Component-based software ecosystems have gained a lot of interest from
the software engineering community in the past two decades. We present
in this chapter a non-exhaustive summary of the state of the art of existing
studies in the field of software ecosystem evolution. The first section presents
how research in software evolution has led to empirical research on software
ecosystems. We present the different existing definitions of software ecosystem
found in the literature and the different studies conducted on ecosystems.
Then the second section presents how other researchers have analyzed and
addressed the different issues related to component-based software ecosystems
presented in Chapter 1.

This chapter is mainly inspired by some parts of the two published book
chapters [34,115] I co-authored. Some smaller parts of the current chapter
are also inspired by our different conference publications on Debian and
R [35–38,43,44]



Chapter 2. State of the Art

2.1 Software Evolution and Ecosystems

Software systems are among the most complex artifacts ever created by
humans. In the 1970s Manny Lehman studied software systems and proposed
a series of properties of such systems known as Lehman’s laws of software
evolution [100]. In the following years multiple other studies gave additional
evidence for these laws in multiple proprietary software systems.

With the advent of the Internet, the possibility to confirm or refute
Lehman’s laws arose. Indeed software development has become increasingly
popular over the last two decades and large collections of software development
history are now available online. In particular multiple studies tried to
confirm Lehman’s laws on open source software. Confirmed by replication
studies [73,136], Godfrey et al. [63] showed that the Linux kernel experienced
a super-linear increase in size between 1994 and 1999. While confirming the
law of continuing growth it challenges other laws such as increasing complexity.
Indeed, previous studies showed that development seems to slow down as a
system grows in size [58, 101]. Additional counter-examples to Lehman’s laws
have empirically shown that all open source software ecosystems evolution
cannot be modeled and predicted by relying on Lehman’s laws [31–33,73].

In the case of Linux, Godfrey et al. [63] identified that drivers are mostly
responsible for both the size and growth of the kernel code base. They gave
multiple reasons to explain this super-linear growth. For example drivers are
generally independent of each other and thus an increasing number of drivers
can be added to the system without impacting its overall complexity. Also
drivers are generally tied to hardware but are kept in the systems as “legacy”
drivers in case some users still use some old hardware.

From this stems the idea of software ecosystems. With the advent of large
scale collaboration over the Internet, it became possible to build software
ecosystems growing at a super-linear pace while limiting the increase in
complexity by subdividing software systems in multiple software projects
loosely coupled together. To reflect this increase in complexity and scale, the
term software ecosystem has been coined by Messerschmitt and Szyperski [117]
to refer to such systems.

The term ecosystem comes from the field of ecology. According to [96],
ecology is the scientific study of the interactions that determine the distribution
and abundance of organisms. Typically, the dynamics of these interactions
are studied in the context of an ecosystem. The term ecosystem was originally
coined in 1930 by Roy Clapham, to denote the physical and biological compo-
nents of an environment considered in relation to each other as a unit [161].
In other words, an ecosystem combines all living organisms (plants, animals,
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microorganisms) and physical components (light, water, soil, rocks, minerals)
that interact with each other.

Software ecosystems have now become a very active area of research, as
can be seen in a recent systematic literature review [108, 109]. Unfortunately,
in contrast to natural ecosystems, there is no common definition of software
ecosystem. It can be defined and interpreted in different ways, depending on
the point of view.

Business-centric viewpoint One of the first occurrences of the term
software ecosystem can be found in [23] where it is used to refer to the way
in which software suppliers, vendors, competitors, users, and third-party
developers interact in software product lines. This view emphasizes the
business perspective of a software system. A similar view, including the socio-
economic environment and regulatory framework is adopted by Jansen et
al. [78, 79], who define a software ecosystem as “a set of actors functioning as
a unit and interacting with a shared market for software and services, together
with the relationships among them.” This view is schematically presented
in Figure 2.1. An entire book is devoted to this perspective of software
ecosystems [80]. A typical, but not exclusive, characteristic of these types of
software ecosystems is the competitive aspect. The different projects in the
ecosystem are in competition, either because they target the same end-users
or offer the same type of service.

software vendors. The software vendor acts as a platform integrator at the supply 

network level and produces products and services for its customers. At the larger 

ecosystem scope level there are other independent software vendors that can have 

simultaneous cooperation and competition with the software vendor in the centre. The 

value net model (Brandenburg, 1997) introduces competitor and complementor 

relationships that are present in the supply and demand sides. We see that the value 

net model characterises at the ecosystem level. We want to address that a SECO 

typically is interconnected with institutions, such as standardisation organisations, 

open source software communities, research communities, and the related 

ecosystems.  

 

Fig 1. Actors in a software ecosystem (adapted from (Jansen, Finkelstein et al., 2009)). 
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2004). The keystone players (or shapers) are the drivers of platform technologies and 

standards (Jansen, Brinkkemper et al., 2009). The niche players 

(participants/followers) require the standard or platform technology provided by the 

keystone player for creating business value (Jansen, Brinkkemper et al., 2009). In this 

chapter, we focus on the role of a keystone player i.e. a software vendor that acts as a 
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Figure 2.1: Actors in a software ecosystem. Figure reproduced from [154].

Since, as illustrated above, business-centric software ecosystems often
constitute a core strategic asset for its contributors and supporting companies,
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it is crucial to gain more insight in how ecosystems evolve and can be
maintained successfully over time.

Development-centric viewpoint An alternative, more fine-grained def-
inition of software ecosystem is provided in the seminal work of Messer-
schmitt [117] to refer to “a collection of software products that have some
given degree of symbiotic relationships.” A similar definition is given by
Lungu [104,105], who defines a software ecosystem as “a collection of software
projects which are developed and evolve together in the same environment.”
This environment refers to the development environment, i.e. the software
and hardware tools used during the development process.

We extend these definitions to take into account the collaborative and
social aspects as well, by explicitly considering the communities involved (e.g.,
user and developer communities) as being part of the software ecosystem. Like
software projects, the communities evolve over time (users and developers
come and go). In addition, there is a high degree of interaction, even some
kind of symbiosis, between the software projects and the communities of the
ecosystems. This viewpoint is adopted by [60,64,65,116,128,137,152] that
focus both on the technical aspects of the software produced and the social
aspects of the communities producing and using this software.

It is especially in ecosystems where the community works towards a
common goal that the collaborative nature wins over the competitive nature.
Typically, software ecosystems consist of a relatively closed core software
system that provides the basic functionality and that is developed by a more
or less stable core team of developers, surrounded by a large collection of
contributions provided by peripheral developers or even end-users [122,130,
137].

We can provide numerous examples of software ecosystems, and many of
them can be interpreted from both the business-centric and the development-
centric viewpoint.

Mobile app stores Commercial or free application repositories for mobile
operating systems (such as iOS, Android and Windows 8 ), form a business-
centric ecosystem. While these operating systems are provided by Apple,
Google and Microsoft, respectively, the SDKs and APIs allow third-party
developers to build mobile applications on top of these operating systems.
The mobile app ecosystems consist of the users, developers, managers of the
mobile OS and the third-party mobile applications built on top of them. The
official mobile app stores allow for applications to be sold to end-users, with
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a shared profit. For Android, there is also a free and open source software
repository of applications, called F-Droid1.

The empirical study of the evolution of mobile applications is an emerging
area of research. For example, Battacharya et al. [13] carried out an empirical
study on the evolution of bug-related issues in 24 widely-used open source
Android apps, while Basole et al. [12] studied the emergence and growth of
mobile app stores in the mobile service ecosystem. McDonnell et al. [112]
studied the rapid evolution of APIs and their adoption by client apps in the
Android ecosystem.

IDEs Development environments for programming languages such as Java
(e.g., Eclipse and NetBeans) or Smalltalk (e.g., Squeak and Pharo [135]) can
be seen from a business-centric viewpoint. For example, the non-profit Eclipse
Foundation is involved in the strategic direction, marketing and promotion of
Eclipse and contains representatives of different companies such as IBM (the
founder of Eclipse), Google, OBEO, Oracle, SAP, Talend. Eclipse is supported
by numerous software vendors, and each of these vendors may provide different
plugins with similar functionality, that are in direct competition with one
another.

From a development-centric viewpoint, the Eclipse ecosystem is the uni-
verse of Eclipse plugins [39] together with the developers of these plugins.
Studying the evolution of plugins is an active area of research [25–27,159,160].
All different Eclipse plugins rely on a common underlying architecture, plat-
form and set of libraries without which they are unable to function correctly.
The community of plugin developers therefore shares the common goal of
improving a complete integrated software development environment. Net-
Beans, the main open source competitor for Eclipse, has a similar modular
architecture with a common core.

A single GNU/Linux distribution Distributions, such as Debian, Ubun-
tu or Red Hat, are generally based on a packaging tool such as APT or RPM.
Here the ecosystem’s projects are not necessarily programs. For example they
can be the set of packages and their building and configuration files.

All GNU/Linux distributions They form an ecosystem comprising sev-
eral hundreds of actively competing Linux distributions, that are all based
on a common core (the kernel of the Linux operating system [77] and a set
of GNU libraries and utilities). The distributions vary in the system they
target (e.g., desktop computers, laptops, tablets, smartphones, embedded

1https://f-droid.org/
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systems) and the applications that are bundled with the distribution. Some
distributions are commercially driven (e.g., Red Hat, SUSE, and Ubuntu),
while others are entirely community-driven (e.g., Debian and Fedora). An
excerpt of the evolution of Linux distributions is shown in Figure 2.2. While
the family of all Linux distributions is an ecosystem, each of the distributions
that belong to this family can also be considered as an ecosystem of its
own, composed of the packages (together with the necessary building and
configuration files) contained in the distribution. Gonzalez et al. [69] have
taken a closer look at the evolution of the Red Hat and Debian distributions.

Forges and archive networks Open Source Software (OSS) repositories,
commonly known as forges, can be considered as business-centric, since there
is no control on the governance of the projects hosted in the forge. Examples
of such forges are SourceForge, GitHub, Bitbucket, Launchpad and Savannah.
There are also many forges that are dedicated to particular programming
languages, such as the CCAN archive network for the C programming language,
the CPAN archive network for Perl, RubyGems for the Ruby language, CTAN
for all kinds of material around TEX, the Python Packaging Index for Python
programs, and so on. Because of the lack of control, within and across these
forges there are often different projects with similar functionality between
which the users can freely choose.

Capiluppi and Beecher [29] performed an empirical study in which they
studied the type of software forge (they refer to them as FLOSS repositories)
and their mode of governance on the projects they host. They compared
SourceForge (which they consider to be an open repository) with Debian
(which they consider to be a controlled repository). They concluded that
Debian hosted larger, more active and more complex structures. As a side-
effect, more effort is needed to maintain these projects.

In [16] they explored how the structure, complexity and decay of open
source projects may be influenced by the repository in which they are retained
(e.g., SourceForge, Savannah, Debian, RubyForge, GNOME, KDE). They
concluded that membership of a particular repository may depend on the
maturity and quality of the project. For example, SourceForge tends to host
more early inceptors and immature projects, while Debian tends to hosts
high-quality mature projects.

GitHub has become an even more popular subject of research. Without
aiming to be complete, we point to some relevant references here. For example,
Gousios et al. [70, 71] provide GHTorrent, a scalable way to analyze GitHub
data. Dabbish et al. [42] focused on the social and community aspects
of GitHub. Blincoe et al. [21] used user-specified cross-references between
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projects to identify ecosystems in GitHub. Vasilescu et al. [151] compared the
involvement on GitHub with the activity on Stack Overflow, a Q&A website
for software developers. Vasilescu et al. [153] studied a large sample of GitHub
projects developed in Java, Python and Ruby. They compared direct code
modifications (commits) with indirect ones (pull requests) and related this
to success or failure of continuous integration with TRAVIS-CI. Thung et
al. [148] used the PageRank algorithm to identify influential developers and
projects on a sub-network of GitHub. Yu et al. [163] studied patterns of
communities found in GitHub’s social network.

Social networks Facebook, LinkedIn, MySpace and Google+ can also be
regarded as business-centric software ecosystems. They allow application
developers to develop and integrate third-party applications, through a well-
defined API. This provides significant added value to both the social network
and the application providers.

GNU This project aims to provide a full free operating system based on
the GNU General Public License (GPL) and the principles of UNIX. It is
composed of GNU projects which are often ecosystems themselves. Examples
of such sub-ecosystems are R and Gnome.

Graphical desktop environments Gnome and KDE are two full desktop
environments for Linux and BSD operating systems. Both are based on
a specific graphic toolkit (respectively GTK+ and Qt4). The developer
communities share the common goal of delivering a complete user-friendly
desktop environment. Because of these properties, if one wants to study
the evolution of the ecosystem it is not enough to study the evolution of
each individual projects. Gnome has been the topic of study for many
researchers [59,103,123,152].

Apache It is an ecosystem with a community of developers based around the
Apache Software Foundation and the Apache License. One of its most famous
projects is the Apache HTTP server. Apache is a decentralized community
that uses a consensus-like development process. The aim is to provide stable,
open and quality software developed by technical experts. Mockus et al.
compared the Apache development process with the one of Mozilla [119].
Bavota et al. [14] studied the evolution of the dependencies between projects
constituting the Apache ecosystem. Weiss et al. [158] studied the e-mails
exchanged by the contributors of the Apache projects for discovering simple
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migration patterns between projects and from the outside to a project. Gala-
Pérez et al. observed that the ratio of e-mail messages in public mailing
lists to versioning system commits has remained relatively constant along
the history of Apache, and therefore advocate this ratio as a way to measure
healthiness of an ecosystem’s evolution [56].

Collaborative and socio-technical aspects of software ecosystems

From the two aforementioned definitions of software ecosystems we have seen
that projects belonging to a software ecosystem can vary in a continuum
ranging from highly competitive (if the business-centric viewpoint prevails)
to highly collaborative (if the sense of community is very strong and there is
strong incentive to work together towards a common goal). Many ecosystems
fall somewhere in between, with some degree of collaboration and some degree
of competition. It is clear that the competitiveness will have an important
influence on the way the ecosystem will evolve over time.

Technical aspects Software ecosystems need to rely on a sophisticated
software and hardware infrastructure and tools needed for their proper func-
tioning, distribution, development, maintenance and evolution. Typical
support that is provided are SDKs, APIs, download repositories, package
management, dependency management and installation tools, version control
systems, tools for change tracking, bug tracking and defect management,
mailing lists, websites and other communication fora.

Social aspects Communication between the members of the software de-
velopment team are at least as important as the technical aspects for the
success of any software project [17, 45, 52, 150]. This is especially true for
OSS projects where it is, in most cases, easier to become involved in the
development team. This implies that the team structure needs to be more
flexible in order to accommodate the easy integration of newcomers and to
deal with the frequent departure of developers.

Fitzgerald [54] coined the term OSS 2.0 to reflect the new generation
of OSS ecosystems that significantly “evolved” over the last decade or so
from its single-project antecedents. Empirical results and insights obtained
for individual OSS projects do not necessarily apply to projects that are
part of a bigger, highly collaborative ecosystem of interacting parts. For
example, the usage of APIs by Eclipse developers and how this relates to
their level of experience was studied by Businge et al. [27]. Nakakoji et
al. [122] distinguished between different types of OSS community members:
developers, bug fixers, bug reporters, readers and passive users. They further
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subdivided developers into peripheral developers, active developers, core
members and project leaders. They proposed a so-called onion model for
the OSS community structure, suggesting that there are very few project
leaders, a bit more core members, even more active developers, and so
on, and that promotion and migration of contributions tend to follow the
layers of this model. Jergensen contested this onion model in an OSS 2.0
setting [81], by showing that contributor migrations do not tend to follow
this model in many cases. Many other empirical studies have studied the
activity patterns of, and differences between, core developers and peripheral
developers [30,49,130,137,146,162]. For a more detailed discussion we refer
the interested reader to [66].

In their replication study, Dinh-Trong and Bieman [49] studied similar
hypotheses on the FreeBSD system. They provided evidence that FreeBSD
includes a small set of core developers involved in few parts of the system,
and a larger set of top developers implementing 80% of the system. Yu
and Ramaswamy [162] also made a distinction between core and associate
project members, but unlike Nakakoji et al. [122] their approach infers roles
automatically by clustering developers based on the frequency of their in-
teraction. Capiluppi et al. [30] analyzed 400 open source projects, their
evolution, and the developer communities responsible for their maintenance.
They distinguished between stable and transient developers based on the
amount of changes they perform and concluded that most of studied projects
have no real developer community but only few regularly contributing devel-
opers. Focusing on the core teams of developers, Robles et al. [137] visually
studied their activity patterns to identify ‘code gods’ projects in which the
core developers hardly change during the entire project lifetime. Terceiro et
al. [146] observed that core developers introduce less structural complexity
than peripheral developers in general, implying that a stable and healthy
core team contributes to the sustainability of open source projects. Still
related to developer communication, Abreu and Premraj [8] studied the
correlation with software quality. They observed a statistically significant
correlation between communication frequency and number of injected bugs
in the software. Through mining the source code repository and mailing
lists of the well-known Apache and Mozilla OSS projects, Mockus et al. [119]
investigated the roles and responsibilities of developers, and observed a set
of implicit conventions among developers that implies an intensive commu-
nication. Because the communication is not scalable (one cannot linearly
increase the communication intensity without adding more human resources),
a strategy is needed to restrain the number and the size of communications.
Apache seems to have a very efficient approach that consists of a minimal
server core with a well-defined interface. Madey et al. [55, 150] analyzed

22



2.2. Component-based Software Ecosystems

the social networks involved in OSS development and observed power laws
at many scales. Martinez-Romo et al [111] went further and provided a
methodology to analyze open source social networks to assess the relation
between an open source project community and a company. Studer et al [60]
extended their research by analyzing the KDE ecosystem and obtained the
same results. Bird et al. [19] analyzed social networks emerging from mailing
lists discussions and observed a Pareto distribution. Mailers tend to form
a small-world network [118] from several points of view; for instance, few
mailers received messages from an important number of persons while most
of mailers received messages from few senders. A strong correlation between
mailing and coding activities was found and evidence was provided that the
role of developers in mailing lists is more important than one of the other
mailers.

2.2 Component-based Software Ecosystems

This section presents the current state of the scientific literature regarding
component-based software ecosystems. Particularly we look at how the
different issues introduced in Chapter 1 have been studied and addressed by
previous research.

2.2.1 Identifying and retrieving dependency information

While many component-based ecosystems require each component to provide
metadata specifying dependencies, sometimes the metadata can be incomplete
or inconsistent, or even entirely lacking [106]. In those cases, it may still be
possible to retrieve the information using automated configuration tools such
as make, cmake, autoconf, ant and maven.

Another way to retrieve the necessary metadata is through static code
analysis. The source code of a software project usually contains the necessary
information about which library or module is imported and which part of
it is being used. A static analyzer can use this information to obtain all
dependencies across components at the ecosystem level. This solution does
have its limits though, since there is no guarantee that dependencies discovered
in the source code will actually be used at runtime. For this, dynamic code
analysis would be required. This is particularly so for dynamically typed
languages where it is much harder to derive the call dependencies statically.

In order to facilitate retrieval of dependencies, Lungu et al. [106] proposed
Ecco, a framework to generically represent dependencies between software
projects. It models an ecosystem as a set of projects containing entities which
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are classes or methods. Entities can be of type provided, called or required.
Provided entities are for example classes and methods declared in the source
code. Called entities represent calls to a method (or a class). Required entities
are called by the project but not provided by it. Lungu et al. [106] used
Ecco to compare different strategies to extract dependencies statically from
dynamically typed Smalltalk source code. While some methods are more
efficient than others, none is able to successfully recover the list of all existing
dependencies.

As explained by Abate et al. [4], a direct dependency graph obtained
by identifying the list of components required by each component of the
ecosystem, is not enough to characterize package interactions because those
other components may have dependencies themselves. Because of this, they
introduced the notion of strong dependencies of a component, which are
the components that are always required, directly or indirectly, in order to
successfully use the component depending on them. On top of this they
introduced a measure of component sensitivity in order to determine, by
means of the strong dependency graph, how much a change to a component
may impact the ecosystem. In the context of Debian for example, they noticed
that the most extreme cases of sensitive packages would go unnoticed when
relying solely on direct dependencies. A sensitivity metric based on strong
dependencies can be used by maintainers to decide which component should
be or should not be upgraded or removed.

2.2.2 Satisfying dependencies and conflicts

Satisfying dependency constraints Since the pioneering work of Mancinelli
et al. [107] we know that, despite the NP-compeleteness of the general problem
of identifying uninstallable components, efficient tools can be developed for
identifying them. Galindo et al. [57] even propose to use software product
line tools for this task.

Based on the dependency graph, tools like distcheck have been developed
to detect those components that cannot satisfy their dependencies. Such tools
have been used successfully in different ecosystems such as Debian, OPAM
and Drupal and have been shown to be useful to developers [1].

Satisfying component co-installability Like direct dependencies are
not enough to know the list of all components required by another, direct
conflicts are not enough to know what are all components incompatible with
another. Just like strong dependencies indicate are the components always
required for another one to work, strong conflicts are the components that
can never be used alongside another one. A strong conflict graph can be used
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to detect co-installability problems between components [10,46,47,155,156].
These studies led to the creation of coinst, an tool to efficiently reduce a
co-installability graph to a manageable size.

2.2.3 Component upgrade

This problem of component upgrades has been studied by many researchers.
Robbes et al. [135] studied the ripple effect of API method deprecation in
the Squeak/Pharo ecosystem. They showed and revealed that API changes
can have a large impact on the system and remain undetected for a long
time after the initial change. Hora et al. [75] also studied the effects of API
method deprecation and proposed to implement rules in static analysis tools
to help developers adapt more quickly to a new API. McDonnell et al. [113]
studied the evolution of APIs in the Android ecosystem. They found that,
while more popular APIs have a fast release cycle, they tend to be less stable
and require more time to get adopted. Bavota et al. [14] studied the evolution
of dependencies between Apache software projects and found that developers
were reluctant to upgrade the version of the software they depend upon.
In [15] they highlighted that dependencies have an exponential growth and
must be taken care of by developers.

All these studies indicate that component upgrade is often problematic
and that contemporary tools provide insufficient support to cope with them.
One of the solutions to detect errors during the development process is
continuous integration [153]. However, while continuous integration can help
to detect changes that break the system, it does not provide information on
which components can be safely upgraded. Developers would benefit from
recommender tools specifically designed to help them making such decisions.

In the context of package-based ecosystems, Di Cosmo et al. [41] highlighted
peculiarities of package upgrades and discussed that current techniques are not
sufficient to overcome failures. They proposed solutions to this problem [2,40]
and built a tool called comigrate to efficiently identify sets of components that
can be upgraded without causing failures [157]. Similarly, Abate et al. [3, 6]
proposed a package manager designed to allow the use of different dependency
solvers as plugins in order to better cope with component upgrade issues.

2.2.4 Inter-project cloning

Code cloning is an active research topic of the software engineering community.
A comprehensive overview of software cloning literature can be found online2.

2http://students.cis.uab.edu/tairasr/clones/literature/
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Most research focuses on how to detect clones (e.g., [90,92,95,98,138]), while
some articles focus on how to remove clones (e.g., [74, 91,93]).

Code clones can be classified in four mutually exclusive types [18, 138].
Type-1 clones are syntactically identical code snippets at the abstract syntax
level (i.e., ignoring differences in white space, layout and comments). Type-
2 clones additionally differ in identifier names and literal values. Type-3
clones syntactically differ by having some statements added, modified and/or
removed with respect to each other. Type-4 clones implement the same
functionality while being syntactically dissimilar.

In the context of a single software project, the presence of software clones
has been extensively studied and has shown to be beneficial or detrimental to
software maintenance [83,86,87,139]. Code clones are often considered harmful
because they led to redundancy due to code duplication. This makes software
maintenance more difficult. For example, Jürgens et al. found inconsistent
changes to code clones to be very frequent and a significant number of defects
are introduced by such changes [83]. On the other hand, many situations
have been reported in which clones are not considered harmful, are impossible
or impractical to remove, or are even beneficial [86,87,139].

The bottom-line is that, if you really have to clone some code, you need
to do it safely. Proactive tool support can be very beneficial to help detect
the presence of clones, to propagate changes across clones, to assess the risk
or benefits of clones, and to help remove clones if needed. Many tools have
been proposed for detecting clones, including CCFinder, [85] CBCD, [102]
CloneDR, CPMiner, Dup, [11] Duploc, [51] iClones, KClone [82] and NiCad.
For a qualitative comparison of clone detection techniques and tools, see [138].

While there have been recent studies on inter-project cloning [94, 144],
insight on the causes and implications of inter-project software clones is still
lacking. Although using cloning may help to avoid dependency upgrade
problems from a user point of view, it forces each developer to choose which
version of all their transitive dependencies to include in their own component.

The only study on code duplication between components with an ecosys-
temic point of view we are aware of is by Mojica et al. [120]. They showed
that Android mobile apps contains a lot of very frequent code reuse across
them. They explain that it is mainly because the component manager for
Android mobile apps only allows for apps to depend on the core Android
platform, forcing app developers to include third-party libraries inside their
own package.
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Selected Case Studies

This chapter briefly presents the two case studies used throughout this
dissertation. First the GNU/Linux package distribution Debian, followed by
the ecosystem consisting of the different package repositories for the statistical
environment R. For both ecosystems we give the context and history of the
ecosystem, the specificities of each of them, and pointers to different studies
that have been previously conducted on them.

This chapter is partly based [34,35,43]



Chapter 3. Selected Case Studies

3.1 Introduction

In this section we present the two ecosystems that are used as case studies in
this dissertation. The first one is the Debian package distribution and the
second one is the package-based ecosystem of the statistical environment R.
The reason we use them as case studies is that they are both composed of
thousands of packages and have existed for more than 15 years, making them
large enough and mature enough for being empirically studied.

The Debian ecosystem has been studied by many researchers and an
extensive collection of tools based on research results have been produced
and used by Debian maintainers [2, 4, 10,40,41,46,47,155,157]. We use this
ecosystem to show how existing tools based on research results efficiently help
the community to solve their problems. We also present how they can be
improved by analyzing their result on the available history of Debian.

On the other hand, R packages do not benefit from as much advanced tools
to support package maintainers. One of the reasons of this can stem from a
community that is largely composed of people without a strong background
in computer science or software engineering, such as statisticians, biologists,
economists, etc. Studying the R ecosystem is first interesting because it does
not benefit as much from existing results on package management as other
ecosystems such as Debian do. However it is still a successful ecosystem
because R was ranked as the sixth most popular programming language in
2015 by IEEE1. Thus it is also important to study it and create new tools
based on these studies to support its package maintainers.

3.2 Debian

The Debian distribution is a coherent collection of free software packages,
initially announced in 1993, with a first stable release in 1996. To facilitate
maintenance and collaborative work, Debian is built out of individual packages
maintained by independent developers. Over time, Debian has undergone
an impressive growth, and today it contains tens of thousands of different
packages, with over a thousand developers. While it has been ported to a
multitude of architectures (see www.debian.org/ports), and supports several
kernels, this dissertation focuses on the GNU/Linux distribution for the i386
architecture only. This architecture is historically the first one for which
Debian has been made available, and the most popular over time.

1http://spectrum.ieee.org/computing/software/the-2015-top-ten-
programming-languages
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The development process of the Debian distribution is mainly organized
around three collections of packages, called releases : stable, testing and unsta-
ble. stable corresponds to the latest official production release (see Table 3.1),
and only contains stable, well-tested packages. The testing distribution con-
tains package versions that should be considered for inclusion in the next
stable Debian release. Since version 5.0, each stable release is made by freezing
the testing release for a few months to fix bugs and to remove packages
containing too many bugs. unstable contains packages that are not thoroughly
tested and that may still suffer from stability and security problems. This
release contains the most recent packages but also the most unstable ones.

Version Name Freeze date Release date # packages
1.0 Never released
1.1 buzz 1996-06-17 474
1.2 rex 1996-12-12 848
1.3 bo 1997-06-05 974
2.0 hamm 1998-07-24 about 1.5K
2.1 slink 1999-03-09 about 2.2K
2.2 potato 2000-08-15 about 2.6K
3.0 woody 2002-07-19 about 8.5K
3.1 sarge 2005-06-06 about 15K
4.0 etch 2007-04-08 about 18K
5.0 lenny 2008-07-27 2009-02-15 about 23K
6.0 squeeze 2010-08-06 2011-02-06 about 29K
7.0 wheezy 2012-06-30 2013-03-04 about 36K
8.0 jessie 2014-11-05 2015-04-26 about 43K

Table 3.1: Stable production releases of Debian

The Debian free software distribution is one of the largest organized
collections of software packages today, and the availability of the full history
of its evolution has made it an ideal object of study over the last few years,
to the point that several infrastructures have been built to facilitate the
extraction of information from this historical data: the Ultimate Debian
Database2 (UDD) described by Nussbaum et al. in [125], and the Debsources
archive3 described by Zacchiroli et al. in [28].

At the macro level, several characteristics of the Debian package repos-
itories have been discussed in the literature. The small-world structure of
the repositories is shown in [97] and [22]. The growth of the distribution,

2https://udd.debian.org
3https://sources.debian.net
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according to its package size and programming language usage has been first
analyzed in [68] and more recently in [28]. Changes in package characteristics
such as age, maintainers, bugs and popularity are charted in [124].

Multiple tools based on the work by Di Cosmo et al. have started to
be used by the Debian community. distcheck can detect packages that are
uninstallable and report the reason why they can’t be installed. coinst detects
strong conflicts and simplify the dependency graph to give the sets of packages
that can’t be installed together. comigrate identifies packages that can be
upgraded without causing failures.

3.3 R

There are many popular languages, tools and environments for statistical
computing. On the commercial side, among the most popular ones are
SAS, SPSS, Statistica, Stata and Excel. On the open source side, the R
language and its accompanying software environment for statistical computing
(www.r-project.org) is undeniably a very strong competitor, regardless of
how popularity is being measured [121].

R forms a software ecosystem through its package management system
that offers an easy way to install third-party code and datasets alongside
tests, documentation and examples. The main R distribution installs a few
base packages and recommended packages. The exact number of installed
packages depends on the chosen version of R (for version R 3.2.2 there were
16 base packages and 15 recommended packages). In addition to these main
R packages, thousands of additional packages are developed and distributed
through different repositories.

CRAN , the Comprehensive R Archive Network, constitutes the official
R repository, containing the broadest collection of R packages. It aims at
providing stable packages compatible with the latest version of R. Quality is
ensured by forcing package maintainers to follow a rather strict policy. All
CRAN packages are tested daily using the command-line tool R CMD check
which automatically checks all packages for common problems. The check
is composed of over 50 individual checks carried out on different operating
systems. It includes tests for the package structure, the metadata, the
documentation, the data, the code, etc. For packages that fail the check, their
maintainer is asked to resolve the problems before the next major R release.
If this is not done, problematic packages are archived, making it impossible to
install them automatically, as they will no longer be included in CRAN until
a new version is released that resolves the problems. However, it remains
possible to install such archived packages manually.
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Besides CRAN , R packages can also be stored on, and downloaded from,
other repositories such as Bioconductor (bioconductor.org), R-Forge (r-
forge.r-project.org), and several smaller repositories such as Omegahat
(omegahat.org) and RForge (rforge.net). Many R packages can also be
found on “general-purpose” web-based version control repositories such as
GitHub, a web platform for Git version control repositories. While CRAN is
the official and most well-known package repository for R, it is not enough to
only consider CRAN to fully study the R ecosystem because of the existence
of many other package repositories.

Hornik [76] studied the evolution of CRAN packages. He showed that
like other package distributions such as Debian it experienced a super-linear
increase in the number of packages and file size. He also looked at the
dependencies of packages and showed that around three quarters of all packages
do not depend on any other CRAN packages and that approximately only
10% of all packages have at least one reverse dependency.

CRAN requires developers to make their package work with the last
stable version of R but does not impose compatibility with previous versions.
Older package versions are not removed but archived. It means that someone
relying on an older version of R does not have the possibility to automatically
install an old package version alongside the correct versions of its transitive
dependencies. Ooms [126] discussed this problem and proposed two solutions
inspired by Debian and npm to overcome it.

Germán et al. [60] studied the evolution of CRAN by comparing the char-
acteristics, growth, dependencies and community structure of core packages
and user-contributed packages. They also analyzed the user and developer
communities by studying mailing list traffic. Zagalsky et al. [164] studied the
difference of practice in the R community between its two main communi-
cation channels, official mailing lists and StackOverflow questions related to
R.

We are not aware of any studies taking into account other R package
distributions (such as Bioconductor) or development forges (such as R-Forge
or GitHub). All related research seems to be restricted to the official package
distribution CRAN .

Although CRAN has a super-linear growth [76], GitHub has an even
higher growth rate and caught up and overtook CRAN in terms of number
of packages as seen in Figure 3.1. Through e-mail interviews [114] with R
package maintainers, we identified that one of the problems they encounter
is the lack of version constraints on dependencies: “Especially with respect
to package dependencies, the risk of things breaking at some point due to
the fact that a version of a dependency has changed without you knowing
about it is immense. That actually cost us weeks and months in a couple of
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Figure 3.1: Evolution over time of the number of R packages in CRAN and
GitHub

professional projects I was part of. While it’s rather a philosophical than a
technical question how package dependencies are/should be handled in R, I
personally think it’s really relevant to at least be able to be very specific and
rigid with regard to your dependencies. And I think the R universe could
provide better tools to fit the needs of developers and professionals out there
in a better way.” [9] The increase in popularity of GitHub and its lack of
generalized quality checking process, stress out the importance of managing
maintainability issues for the R community.
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A Conceptual Framework for

Analyzing Package-based Software
Ecosystems

The remainder of this dissertation is focused on the empirical analysis of two
case studies. We strive to ensure that our analysis can be reproduced on
other software ecosystems with minimal effort. In order to fulfill this goal
we propose in this chapter a conceptual framework to analyze package-based
software ecosystems. The framework consists of a general workflow for data
extraction, processing and analysis. It defines a common terminology in order
to be able to study and compare different package repositories. Then this
chapter details the various steps of the framework and finally presents how it
has been applied on the two case study ecosystems.



Chapter 4. A Conceptual Framework for Analyzing Package-based Software
Ecosystems

4.1 Introduction

We define a general framework to serve as foundation for the empirical
analysis conducted in the subsequent chapters. Its goal is to provide a
common terminology, organize software tools and scripts, data and meta-data
required for the analysis of a package-based software ecosystem. The goal of
this framework is to provide a way to gather, store and analyze data coming
from different sources concerning the ecosystem. Because we are interested in
performing data analysis of ecosystems, the framework is designed around a
data format intended to be used by analysis tools and scripts providing an
output such as charts, reports like scientific papers or end-user dashboards.

At high level our framework is designed based on a three step workflow.
These three steps are data extraction, data analysis and reporting. This
workflow revolves around a terminology to abstract packages and package
distributions.

This chapter will first define the terminology used by the framework. Next,
the different steps of the framework workflow are presented: data extraction,
data analysis and reporting. Then, different formats available to represent
data are presented. Finally, concrete examples are given to illustrate how the
framework can be used.

4.2 Terminology

In this section we define an abstract terminology for the different concepts
used by the framework. We define a package as a set of files that can contain,
among others, meta-data, source code, documentation or configuration files
that will be installed on users’ systems. Characteristic of a package is that it
can be stored online at different places and its content evolves over time.

In order to take these particularities in consideration we extend Lungu’s
definition of an ecosystem [104,105]: “a collection of software projects which
are developed and evolve together in the same environment”. We define an
ecosystem as a set of distributions containing different projects. A project is
a physical location where the content of a package is stored and may change
over time.

Notation 4.2.1 (Ecosystem, distributions and projects).

• A package-based ecosystem E is composed of different package distribu-
tions.

• A package distribution (or repository) D ∈ E is a set of project histories.
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• A project history P ∈ D consists of a set of project states s ∈ P .

• Projects(E) = {P ∈ D | D ∈ E} is the set of all project histories
belonging to the ecosystem E.

• States(D) = {s ∈ P | P ∈ D} and States(E) =
⋃
D∈E States(D) are

the sets of all project states belonging respectively to the distribution D
or the ecosystem E.

Each project state s has a release time, package name and version. The
package version is a tag generally used by the package manager to identify a
version of a package.

Notation 4.2.2 (Packages, versions and release times).

• A project state s ∈ States(E) is defined as a couple ((p, v), t) where
(p, v) is itself a couple of the package name p and the version tag v, and
t ∈ T the release time of the project state.

The time domain T is a totally ordered set. package : P → Name,
version : P → V ersions and time(s) = t are defined as projection
functions and respectively abbreviated to ps, vs and ts for a given state
s.

• States(p,D) = {s ∈ States(D) | ps = p} is the set of project states
from distribution D whose package name is p.

• States(p, v,D) = {s ∈ States(p,D) | vs = v} is the set of project states
from distribution D whose package name is p and version tag is v.

• Packages(D) = {ps ∈ Name | s ∈ States(D)} and Packages(E) =
{ps | s ∈ States(E)} are the sets of all package names belonging respec-
tively to the distribution D and the ecosystem E.

• V ersions(D) = {(ps, vs) | s ∈ States(D)} is the set of all package
versions belonging to the distribution D.

• V ersions(E) = {(ps, vs) | s ∈ States(E)} is the set of all package
versions belonging the ecosystem E.

Figure 4.1 shows a possible theoretical structure of a package-based eco-
system. While in some cases it can happen that a package is found in a single
project with each state matching a different version of that package, the use
of this terminology allows to deal with ecosystems where it is not necessarily
the case.
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Figure 4.1: Example of a possible ecosystem topology

When one of the ecosystem’s package distributions is a source code repos-
itories, such as GitHub, each GitHub project corresponds to a project history
in our framework and each commit of the project’s git repository corresponds
to a single project state. Hence, the projects are not directly related to
packages. The package name and the version tags that are associated to each
state can be inferred from meta-data found in the git repositories themselves.
Thus it is common for multiple states (i.e., git commits) to have the same
version tag, in particular for successive states for which package meta-data is
not updated.

Similarly, package names can be different between two states of a single
project, and be the same between states of different projects. In the context
of packages hosted on GitHub, this can happen when the author of a project
changes the name of its package without creating a new GitHub project, or
when two different projects define the same package.

In addition to package name and version tag, each project state can have
meta-data associated to it. We consider meta-data as a dictionary associating
keys to values of different types. Meta-data can also include, among others,
the official maintainer name, a list of authors, a list of relationships with
other packages such as dependencies, copyright information, description, tags,
etc., all stored in structured or unstructured format.

Notation 4.2.3 (Meta-data).
md : States(E) × Key → Metadata : (s, k) 7→ md(s, k) represents the

meta-data value for project state s and key k.

Snapshots represent the state of a distribution at a given point in time. It
is the set of the latest project states that were available in that distribution
at that time.

Notation 4.2.4 (Snapshot). For a given t ∈ T , a package snapshot is defined
as
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Dt = {s ∈ P | P ∈ D, ts < t, ∀s′ ∈ P, s′ 6= s ∧ ts′ < t⇒ ts′ < ts}, the set
of the latest project states, released before time t, for each project of D.

Finally packages have relationships such as dependencies or conflicts that
can be defined between them. It is important to note that these relationships
are not defined between states but between a state and a package version.
Indeed, while dependencies are defined in the project history, they reference
package names rather than projects.

Notation 4.2.5 (Relationships).

• Dep ⊆ States(E) × V ersions(E) is the dependency relation between
project states and package versions.

• dep(s, t,D) = {s′ ∈ Dt | (s, (ps′ , vs′)) ∈ Dep} is the set of all direct
dependencies of project state s that are included in a given package
snapshot.

• revdep(s, t,D) = {s′ ∈ Dt | (s′, (ps, vs)) ∈ Dep} is the set of all direct
reverse dependencies of project state s that are included in a given
package snapshot.

• dep∗(s, t,D) = dep(s, t,D) ∪⋃
s′∈dep(s,t,D) dep

∗(s′, t, D) is the set of all
transitive dependencies of s in a given package snapshot.

• revdep∗(s, t,D) = revdep(s, t,D) ∪ ⋃
s′∈revdep(s,t,D) revdep

∗(s′, t, D) is
the set of all transitive reverse dependencies of s in a given package
snapshot.

• Conf ⊆ States(E)×V ersion(E) is the conflict relation between project
states and packages. It states which package versions are incompatible
with a given project state.

• conf(s, t,D) = {s′ ∈ Dt | (s, (ps′ , vs′)) ∈ Dep} is the set of all declared
conflicts of project state s included in a given package snapshot.
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Notation Description
E an ecosystem
D a distribution
P a project history
s a project state

(ps, vs) the package name and the version tag of a state s
ts the release time of a state s
Dt the snapshot of a distribution at time t

dep(s, t,D) all dependencies in distribution D of project state
s at time t

dep∗(s, t,D) all transitive dependencies in distribution D of
project state s at time t

revdep(s, t,D) all reverse dependencies in distribution D of project
state s at time t

revdep∗(s, t,D) all transitive reverse dependencies in distribution
D of project state s at time t

conf(s, t,D) all declared conflicts in distribution D of project
state s at time t

Table 4.1: Summary of introduced notation

4.3 Data extraction

Data extraction consists of fetching data from different sources and converting
it to a data format used by our framework. Most of the data used for our
analysis is generally fetched from various online sources. Examples of data
sources are open source code repositories, web servers and web pages. Even
though we do not rely on them, ideally one should be able to extend our
framework using other data sources such as mailing list repositories or bug
tracking systems.

One of the goals of the framework is to easily update data. This means that
ideally one should not download again data of packages previously downloaded.
Data must be updated differently depending on its nature. Some data sources
can consist of individual pieces of information that are not supposed to change
over time while other data sources can change.

For one time data retrieval, it is only necessary to download a piece of
data from the server if it does not already exist in the local database. An
example of one time data retrieval is a package version distributed on a web
server as a tarball. Each package version is supposed to be immutable through
time once released and thus does not need to be downloaded again if it was
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already retrieved in the past.
Secondly some data sources can be downloaded incrementally. For example

all the versions of a package can be downloaded incrementally. When local
data needs to be updated it is only necessary to download the versions that
were released since the last data extraction. If the content and history is
stored in a source code management tool like git or Subversion this is done
automatically using these tools.

While there already exists tools to extract history information from source
code repositories, they are not necessarily suited for our analysis. For example
CSVAnalY 1, from the MetricsGrimoire [67] toolset, works by creating a
database schema summarizing the source code repository history. It is however
not well suited to retrieving the content of specific file versions. Moreover it is
also tied to source code repositories, such as git and Subversion repositories.
In our case we are interested in packages that may be stored inside such
repositories but not necessarily. It is thus simpler and more reliable to directly
use git to retrieve the information we need.

Finally some data pieces must be downloaded completely each time the
local data is updated. One particularity of this kind of information is that it
can be stored historically or not. In the first case it means the local data will
contain different versions of the information representing its state at a given
point in time. An example is the results of the R CMD check. It is a web
page2 containing the output of the tool run regularly on the ecosystem and
for which there is no available public archive of previous results.

In the second case only the last version of the information is kept locally
if there is no need to keep it historically. It could also be an issue to retain its
history if it would use too much disk space due to the size or update frequency
of the information. An example of such a data type is a list of repositories
available for download.

4.4 Data analysis

Data analysis consists of all transformations that need to be applied to
the data after extraction in order to produce meaningful results. These
transformations are independent from the data source and must only rely on
the data extracted during the extraction step. These transformations can
require an important amount of computation and can output some additional
data containing the result of these computations. This ensures that the
original data is always available and not overwritten. Multiple iterations of

1https://github.com/MetricsGrimoire/CVSAnalY
2https://cran.r-project.org/web/checks/check_summary.html
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data analysis can be implemented in order to allow an analysis to rely on
data produced by another transformation.

In the context of this dissertation various kind of data analysis have to be
considered. First simple computations such as data aggregation have to be
performed. For example this can consist in aggregating the value for a metric
over time for different snapshots of a package distribution. Secondly we can
also perform more complex operations such as parsing the code of all package
versions of the ecosystem and analyzing it; or running an external tool on
each package.

Finally, a common type of analysis is statistical methods and tests. Because
many of the subsequent research questions require the study of time-dependent
data, we resort to the statistical technique of survival analysis [88, 89, 140] to
be able to answer research questions related to the introduction and survival
of a given event in the ecosystem.

Survival analysis is used to create a model estimating the survival function,
which is the probability that an event does not occur after a certain point in
time, in a given population. This technique takes into account the fact that
the studied event might not occur during the observation period. It models
the time it takes for events to occur and allows to take into account so-called
right-censored data, for which it may be unknown whether the event occurred
or not because it has not yet occurred or the subject has “disappeared”. For
example, if we study the survival of all packages during a given period, we do
not know which of these packages may have become inactive after the end
of the period of study. Survival analysis allows to take into account those
packages for which we don’t know whether the event we are interested in
happened.

The survival function models the probability of an arbitrary subject in
the dataset to survive t units of time after the start of the study. In order to
approximate the survival function, we use the Kaplan-Meier estimator [53].
The Kaplan-Meier curves visualize the cumulative probability to survive from
time zero. As a result, these curves start at value 1 (100% probability of
survival at time zero) and continue to decrease monotonically over time. The
probability Ŝ(t) that an individual is still alive at time t is defined as the
probability that it survived at time t1, at time t2, and so on until time t.
Therefore it is defined as

Ŝ(t) =
∏
ti<t

nti − dti
nti

where nti is the number of individuals for which the studied event have not
occurred yet before time ti, and dti the number of individuals for which the
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event occurred at time ti. When right-censoring happens for an individual
before a given ti, it is simply ignored when counting nti , the number of
individuals still at risk before ti.

We make use of survival analysis and Kaplan-Meier estimator in Chapters
5 and 7.

4.5 Reporting

Reporting aims at producing meaningful information about the ecosystem.
This can simply be generating a few charts, numbers or statistical results.
However it can also be much more elaborate like a complete application such
as a dashboard. In that case it allows a user to browse data and decide which
analysis to perform or results to display. An example of such a dashboard
is given in Chapter 9. Reporting can also consist in exporting data to a
particular data format such as CSV.

This step can also process data but contrarily to the data processing step,
the result won’t be saved in a data format defined in the framework. Thus
deciding if a computation must be included in the data processing step or
in the reporting step depends on the type of result output, the size of the
processed data and the time required to compute it.

For example complex computations that require aggregating data at the
level of the ecosystem generally fit better in the data processing step. In
some cases, like a dashboard, it is often not conceivable to include this kind
of computation in the dashboard itself. It should instead rely on previously
cached data. Another aspect to take into account is the volume of data
that can reasonably be stored. Saving the result of a computation for all
components might considerably increase the volume of data stored on disk.
Deciding whether a computation or analysis better fit in the result output or
data processing step requires to make a compromise between longer result
output generation time or a bigger volume of data to store.

4.6 Data representation

This section presents the different data formats that our framework has to
deal with in the context of the two case studies of this dissertation: R and
Debian. These formats can be encountered during data extraction, during
data analysis as the input or output of a tool or even during reporting.
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4.6.1 Debian control files

An example of meta-data format used by package management systems is the
Debian control files. Each Debian package contains a file containing meta-
data such as package name, version or dependencies stored as a dictionary
with key separated from values by a colon. An example of such a file is
provided in Figure 4.2. The different types of keys that can be used and the
format used by their respective values is extensively described in the Debian
documentation [131].

Package: xul-ext-adblock-plus

Description: Advertisement blocking extension

for web browsers

Source: adblock-plus

Version: 2.1-1+deb7u1

Replaces: adblock-plus (<< 1.1.1-2)

Provides: adblock-plus, iceape-adblock-plus,

icedove-adblock-plus, iceweasel-adblock-plus

Depends: iceweasel (>= 8.0) | icedove (>= 8.0)

| iceape (>= 2.5)

Enhances: iceape, icedove, iceweasel

Conflicts: mozilla-firefox-adblock

Package: SciViews

Title: SciViews GUI API - Main package

Imports: ellipse

Depends: R (>= 2.6.0), stats,

grDevices, graphics, MASS

Enhances: base

Version: 0.9-5

Figure 1 provides a concrete example of how component dependencies and conflicts can
be specified for packages in the Debian and R ecosystems, respectively. The Debian package
xul-ext-adblock-plus depends on one of the three packages iceweasel, icedove or iceape. This is
expressed by a disjunction (vertical bar | ) of packages. The package conflicts with mozilla-
firefox-adblock. The R package SciViews depends on version 2.6 of the R language as well
as packages stats, grDevices, graphics and MASS. Note that the notions of conflicts and the
ability to express disjunctions of dependencies are not explicitly supported in the metadata
of R packages.

Package: xul-ext-adblock-plus

Description: Advertisement blocking extension

for web browsers

Source: adblock-plus

Version: 2.1-1+deb7u1

Replaces: adblock-plus (<< 1.1.1-2)

Provides: adblock-plus, iceape-adblock-plus,

icedove-adblock-plus, iceweasel-adblock-plus

Depends: iceweasel (>= 8.0) | icedove (>= 8.0)

| iceape (>= 2.5)

Enhances: iceape, icedove, iceweasel

Conflicts: mozilla-firefox-adblock

Breaks: adblock-plus (<< 1.1.1-2),

iceape (>> 2.13~a1+), iceape (<< 2.5),

icedove (<< 8.0), iceweasel (<< 8.0)

Package: SciViews

Title: SciViews GUI API - Main package

Imports: ellipse

Depends: R (>= 2.6.0), stats,

grDevices, graphics, MASS

Enhances: base

Version: 0.9-5

Figure 1: Two concrete examples of component metadata: [left] for the Debian package
xul-ext-adblock-plus and [right] for the R package SciViews.
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Dependencies and conflicts can also be restricted to specific versions of the target com-
ponent. This is usually represented by a constraint on the version number. For example,
in Figure 1 Debian package xul-ext-adblock-plus requires version 8.0 or higher of iceweasel,
while it is incompatible (breaks) with a lower version.

In addition to abstract dependencies and optional dependencies, one can consider the
stage at which they are needed (build-time, testing, installation or run-time) and the way in
which these dependencies are intended to be used (e.g., as stand-alone programs, middleware,
plug-ins or linkable libraries).
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Tom: Remove the “Breaks” metadata.

Figure 1: Two concrete examples of component metadata. Left: the Debian package xul-ext-
adblock-plus. Right: the R package SciViews.
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Figure 4.2: An example of Debian control file from the package xul-ext-adblock-
plus.

4.6.2 R DESCRIPTION files

R packages make use of a format inspired by Debian control files. Each R
package contains a DESCRIPTION file containing meta-data stored in a
similar way but with different key names and different conventions for the
values. One major difference with Debian control files are that dependencies
cannot contain disjunctions of packages. Also, while Debian provides a formal
definition for package version numbers, R package version numbers don’t. An
example of a DESCRIPTION file is provided in Figure 4.3.

4.6.3 CUDF

Common Upgradeability Description Format (CUDF) is a file format defined
by Treinen et al. [149] to describe update scenarios for package-based software
distributions. While it focuses on update scenarios it can represent a list of
package versions in a similar way to Debian control file and R DESCRIPTION
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Figure 1 provides a concrete example of how component dependencies and conflicts can
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Figure 4.3: Example of R DESCRIPTION file from the package SciViews.

files. However contrary to the two previous formats it is not tied to a specific
software distribution or language and tries to generalize concepts found across
multiple package management systems. One of the strengths of CUDF is that
it can be used with existing tools such as comigrate.

package: wesnoth
version: 1
depends: libc6 >= 8, libfreetype6 >= 4, libfribidi0 >= 1,
libgcc1 >= 6, libsdl-image1.2 >= 2, libsdl-mixer1.2 >= 1,
libsdl-net1.2, libsdl1.2debian >= 3, libstdc++6 >= 5,
libx11-6 , zlib1g >= 5, wesnoth-data = 1

Figure 4.4: Excerpt of a CUDF file for Debian package wesnoth

4.6.4 devtools remotes

Recent releases of devtools have a mechanism3 to specify the location of a
package in a DESCRIPTION file either as a tarball hosted on web servers
or as a git, Subversion, GitHub or Bitbucket repository. This is achieved by
specifying the type of the remote followed by a URI identifying the repository
and possibly a version.

Here is a list of remotes, taken from the official devtools documentation,
for different types of supported repositories:

Remotes: git::https://github.com/hadley/ggplot2.git
Remotes: bitbucket::sulab/mygene.r@default, dannavarro/lsr-package
Remotes: svn::https://github.com/hadley/stringr
Remotes: url::https://github.com/hadley/stringr/archive/master.zip
Remotes: local::/pkgs/testthat

3https://github.com/hadley/devtools/blob/master/vignettes/dependencies.Rmd
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Remotes: gitorious::r-mpc-package/r-mpc-package

4.6.5 Output formats

Multiple data formats can be used by the tools we design to export data.
Because we perform data analysis, one data format we will often use are tables
of data, also known as data frames. This kind of data can easily be exported
in a Comma Separated Values (CSV ) file which can easily be imported by
external tools. A CSV can easily be imported by a relational database system
such as MySQL. While rather versatile, CSV has the disadvantage of not
specifying the type of table columns.

A recent initiative to facilitate sharing data frames between different data
analysis environments is feather 4. It provides an R package and a Python
module for efficiently reading and writing data frames in binary files.

For complex data that can’t be formatted as a table, we use compressed
JSON and rds files. JSON is a human readable standard for storing objects
and rds is the format used by R to serialize its objects. While we use JSON as
much as possible for interoperability, rds is used to increase the performance
of our tools written in R.

4.7 Examples

In this section we illustrate how our conceptual framework has been imple-
mented to analyze both case studies presented in Chapter 3.

4.7.1 Debian

In Chapter 5 we base our analysis on public archives5 of daily snapshots of
all available Debian packages. For a given distribution and date, a snapshot
contains the concatenated control files of the latest version of all packages that
were available for that date. Because each package is identified as a project
in the distribution and each package version is a single project state, there is
no particular need to make a distinction between packages and projects.

A replication package containing the data, scripts and results of the
empirical analysis from Chapter 5 is available on GitHub6. This replication
package contains two R packages and a set of scripts. The first package
DebianEvolData contains code responsible for data extraction alongside the

4https://github.com/wesm/feather
5http://snapshot.debian.org/archive/debian
6https://github.com/ecos-umons/DebianCoinstEvol
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most intensive part of the data analysis. The package DebianEvolAnalysis
contains the least computation-intensive part of the data analysis alongside
reporting.

Moreover, to allow one to easily reproduce the analysis without having to
extract and process the large volume of data from the Debian archives, we
provide in the GitHub repository aggregated data files. These data files can be
directly used by DebianEvolAnalysis to generate the results from Chapter 5.

4.7.2 R

Chapters 6, 7, 8 and 9 all make use of data extracted with extractoR, a series
of R packages implementing the data extraction and analysis for CRAN and
GitHub.

extractoR.cran is the package responsible for extracting R packages from
CRAN . Content of all CRAN package versions are available at https://
cran.r-project.org/src/contrib. Similarly to Debian, we define a CRAN
project as a single package and associate with each version a single state.
However because of GitHub we have to make a distinction between packages
and projects.

Indeed each commit of all GitHub repositories may contain one package,
multiples packages stored in sub-directories or no package at all. Because
package names are defined inside the DESCRIPTION file, it is possible
for a single GitHub repository to have its package name changed over time.
Moreover a single package name, as identified by the dependency relationships
from the DESCRIPTION files, might be found in different GitHub repositories.

Given a list of GitHub repositories, package extractoR.github is responsible
for downloading or updating git repositories from GitHub that contain a
package at the root of their master branch. extractoR.github also browses
the history of all the git repositories to find all commits which updated the
DESCRIPTION file. Thus, each project represents a single GitHub repository
and each project state a commit that modified the DESCRIPTION file inside
the associated git repository.

Additionally to extracting data, these two packages are also used each
time another package needs to access the content of a project. For example
extractoR.description is responsible for parsing DESCRIPTION files. When
it parses a CRAN DESCRIPTION file of a given project state, it relies on
extractoR.cran to read this file from the appropriate package version. When
it parses a GitHub DESCRIPTION, it relies on extractoR.github to first
checkout the appropriate git commit and read the file. Similarly, given a
project state, extractoR.namespace parses the NAMESPACE files of that
state and extractoR.content parses the R code contained in the project state.
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extractoR

extractoR.cran

extractoR.data

extractoR.github

extractoR.description

extractoR.snapshots

extractoR.namespace

extractoR.content

Figure 4.5: Dependency graph of the different packages contained in extractoR

Additional packages are contained inside extractoR. extractoR.snapshots
is used to manipulate the daily snapshots extracted from the CRAN R CMD
check 7. extractoR.data facilitates importing and exporting to various data
formats. Figure 4.5 shows how the different packages of extractoR depends
upon each other.

7https://cran.r-project.org/web/checks/check_summary.html
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Addressing Co-Installability Issues in

the Debian Ecosystem

Users and developers of software distributions are often confronted with
installation problems due to conflicting packages. A prototypical example of
this are the Linux distributions such as Debian. Conflicts between packages
have been studied under different points of view in the literature, in particular
for the Debian operating system, but little is known about how these package
conflicts evolve over time.

This chapter presents an extensive analysis of the evolution of package
incompatibilities, spanning a decade of the life of the Debian stable and
testing distributions for its most popular architecture, i386. Using the tech-
nique of survival analysis, this empirical study sheds some light on the origin
and evolution of package incompatibilities, and provides the basis for build-
ing indicators that may be used to improve the quality of package-based
distributions.

This chapter is mainly inspired by a conference paper [35] presented at
the MSR 2015 conference.
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5.1 Introduction

An important part of the medatata declared by components, and particularly
packages, are the declared dependencies, which describe the other packages
immediately necessary for its installation and execution. Another important
part of the metadata are declared conflicts of each package, which describe
the immediate incompatibilities with other packages.

In principle one would like all packages to be installable together, and the
packaging guidelines of distributions like Debian clearly suggest that conflict
declarations should be used sparingly [132]. Nevertheless, there are still many
conflicts that may arise [10]: two packages may want to control the same
common resource (a library, a configuration file, a network port), two or more
packages may provide incompatible implementations of the same functionality,
and one can even find special packages (such as Debian package harden-servers)
that are used to implement security policies by declaring conflicts with all
other packages whose functionality may be abused.

Unfortunately, while the interplay between declared dependencies and
declared conflicts, taken in isolation, makes perfect sense, it may end up
breaking many packages, preventing a user from installing together a set of
software packages that he needs to use simultaneously [46]. Identifying and
resolving these issues is very important when maintaining a package repository.
Unfortunately, detecting such incompatibilities due to the interplay between
declared dependencies and conflicts is algorithmically hard.

Only recently, efficient algorithms and tools have been proposed for detect-
ing these incompatibilities [156]. One of these tools, known as comigrate has
been specifically developed to prevent to a large extent the introduction of
such incompatibilities [155]. Nonetheless, after a set of incompatible packages
has been spotted, a distribution maintainer is still left with the complex
and time-consuming task of finding the right course of action to resolve it:
which of the hundreds of dependencies and conflict relations involved in the
incompatibility needs to be modified? In which package metadata should one
look to find it?

To provide help in this difficult and crucial task, we perform an extensive
analysis of a large package-based repository over a significant period of time,
and study how package incompatibilities are introduced, evolve, and may
get removed. By mining the history of the repository, and comparing some
of the results with known issues, we are able to provide insight into the
characteristics that are statistically significant to pinpoint the packages that
are most likely to be problematic.

With this study, we aim to provide a basis for building future indica-
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tors and tools that may be used to improve the quality of package-based
distributions. To this extent, we focus on the following questions. How can
we identify potentially problematic packages in the distribution? When are
incompatibilities introduced in, or removed from, packages? What causes
(dis)appearance of package incompatibilities?

The case study that we have chosen to carry out such an empirical
analysis contains two Debian Linux distributions (stable and testing) for the
i386 architecture, over a 10-year time period (starting from January 2005).
To the best of our knowledge, this is the first study focusing on the long-term
evolution of package incompatibilities in the Debian distribution. We chose
this ecosystem as case study because it contains a large number of packages
and an extensive history. A replication package containing the data, scripts
and results of our analysis is available online1.

The remainder of this chapter is structured as follows. Section 5.2 presents
the research questions and methodology, Section 5.3 reports on our empirical
analysis, and Section 5.4 discusses the results. Section 5.5 presents some
threats to validity of our research. Finally Section 5.6 concludes.

5.2 Methodology

As mentioned in chapter 3 there are three distinct distributions of Debian:
stable, testing and unstable. Because we are interested in studying the evolution
of Debian development activity, our empirical study will primarily consider
the testing release, as well as its impact on the stable release that is derived
from it. Debian unstable is a rolling release distribution containing the most
up to dates packages. The testing release corresponds most closely to a
development version: package versions contained in it are candidates for the
next stable production release.

5.2.1 Mining Strong Conflicts

The Debian package management system relies on metadata stored in control
files. Among others, the control file of each package P describes the direct
relationships with other packages: dependencies indicate which other packages
are directly needed to perform the installation of P , and declared conflicts
indicate the packages for which it is explicitly known that they cannot be
installed together with P .

In the literature, as well as in this thesis dissertation, the term strong
conflict is used to indicate that two (or more) packages can never be installed

1https://github.com/ecos-umons/DebianCoinstEvol
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together, independently from what is explicitly declared as a conflict in their
metadata [46]. In addition, we use the term conflicting package to refer to a
package that has at least one strong conflict with another package.

It is important to stress that strong conflicts are not necessarily “bad”:
many packages may not be installable together “by design”. But if such
conflicts are not reported explicitly as declared conflicts, they should still
be considered as “problematic”: a user may be unaware of the impossibility
to install both packages together, and during package evolution new and
unexpected indirect strong conflicts may arise without the package maintainers
being aware of them.

For the Debian i386 testing and stable distributions we have extracted
daily snapshots during the almost 10-year period from 12 March 2005 (>14K
packages) until 6 January 2015 (>42K packages). For each daily snapshot,
we only considered packages included in the official Debian distribution. We
excluded from our analysis those packages that belong to the contrib or non-
free category. These repositories contain packages that are not fully compliant
with the Debian Free Software Guidelines or depend upon such package.

A major problem when analyzing package strong conflicts is the sheer
size of the package dependency graph: there are literally tens of thousands
of different packages with implicit or explicit dependencies to many other
packages. As an example, the full graph for the Debian i386 testing distribution
on 1 January 2014 contained 38,411 packages, 181,265 dependencies, 1,490
declared conflicts and 49,026 strong conflicts .

Vouillonet al. [156] addressed this problem by proposing an algorithm
and theoretical framework to compress such a dependency graph to a much
smaller one with a simpler structure, but with equivalent co-installability
properties, which is called a co-installability kernel. The idea is that sets of
packages are bundled together into an equivalence class if all packages in the
set do strongly depend with one another, while the collection of other packages,
with which they strongly conflict, is the same. Applying this algorithm to the
Debian i386 testing distribution on 1 January 2014 results in 994 equivalence
classes, and 4,336 incompatibilities between these equivalence classes.

The coinst tool (http://coinst.irill.org) was developed specifically
for extracting and visualizing co-installability kernels for GNU/Linux distri-
butions. We used the output of this tool as the basis of our analysis.

For each daily snapshot, we used R scripts to browse and extract all names
of packages contained in the main archive area (i.e., belonging to the official
Debian distribution)2. To retrieve the information about the co-installation

2The information for a given snapshot date <DATE> (using the format YYYYM-
MDD) is available on http://snapshot.debian.org/archive/debian/<DATE>T060000Z/
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conflicts of these packages we used JSON output files generated by coinst
with the command
coinst -conflicts conflicts -stats -o graph.dot Packages.bz2 >& log

Previous research used strong conflict graphs to determine appropriate
solutions to package co-installation problems. These solutions, however, did
not take into account the evolution over time of these strong conflicts . In our
current work, we aim to determine to which extent this historical data provides
additional information to understand and predict how strong conflicts evolve
over time, and to improve support for addressing package co-installation
problems.

5.2.2 Research Questions

We address each of the following research questions, in separate subsections.
Answers to these questions can help, at the longer term, to come up with
quality indicators and tool support for dealing with strongly conflicting pack-
ages.

RQ1 How can we identify problematic packages in the distribution?

RQ2 How long does it take before a strong conflict is introduced in a package?

RQ3 What is the effect of strong conflicts on the longevity of packages?

RQ4 How long does it take before all conflicts get removed from a strongly
conflicting package?

RQ5 What causes frequent appearance and disappearance of strong conflicts?

All survival analysis results produced in this chapter were obtained using
R scripts that relied on the R package survival for computation and on the R
package ggplot2 for visualization.3

5.3 Results

5.3.1 Overall Characterization

Let us start by presenting some plots and descriptive statistics characterizing
the evolution of strongly conflicting packages belonging to the Debian stable
and testing distributions.

dists/testing/~\main/binary-i386/Packages.bz2
3See cran.r-project.org/web/packages/survival and cran.r-project.org/web/

packages/ggplot2.
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Figure 5.1 compares the daily evolution of the total number of packages
(in blue) against the number of strongly conflicting packages (in red). The
evolution of the stable distribution (solid lines) clearly shows “plateaus” that
start at the moment of a major public release of a new Debian version. This
is quite normal, as the stable version of Debian is only allowed to incorporate
security-critical changes after a release.

The testing distribution (dotted lines) is more interesting: the development
process leads to a general linearly increasing trend, with some periods of
stability or light decrease that start at the official freeze date of the testing
distribution (dotted vertical lines), and end at the official date of the next
stable public release (solid vertical lines). During these freeze periods only bug
fixes are allowed or packages can be removed, while it is generally forbidden
to add any new package or package version to the testing distribution.
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Figure 5.1: Daily evolution of the total number of packages (in blue) and
strongly conflicting packages (in orange) for the testing distribution (dotted
lines) and stable distribution (solid lines) of Debian. Solid vertical black lines
correspond to official dates of a stable public release. Dotted vertical black
lines correspond to the freeze dates of the testing distribution preceding the
stable release.

Figure 5.2 shows the evolution over time of the ratio of the number of
strongly conflicting packages in a snapshot over all packages in that snapshot.
For the testing distribution (dotted blue lines) we observe that, starting from
2007 and with only a few exceptions, this ratio remains between 15% and
25%. We also observe a slight decrease over time, despite the fact that the
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Figure 5.2: Ratio of strongly conflicting packages in snapshots of the testing
distribution (dotted blue lines) and the stable distribution (solid blue lines).

number of packages continues to increase with each new major release: this
corresponds to the fact that the Debian community actively works to keep
strong conflicts at a minimum. For the stable distribution (solid blue lines)
we observe the same evolutionary behavior, combined with the presence of
the “plateaus” corresponding to different public releases of Debian that were
also found in Figure 5.1. Finally, for the testing distribution we observe quite
a number of “trend breaks”, i.e., sudden increases in the number or ratio of
strong conflicts that appear suddenly and disappear after some time. This
will be the subject of deeper investigation in RQ1.

Figure 5.3 displays, daily snapshots of the testing distribution, the relative
number of strong conflicts per package. Most of the time there are between
2,000 and 3,000 packages with exactly one strong conflict . This corresponds
to a ratio of about 50% of all strongly conflicting packages. There are much
less packages having two strong conflicts, and even less with three strong
conflicts or more.

Figure 5.4 displays the same information but for the stable distribution.
Again we observe the familiar “plateaus” and a ratio of between 50% and 70%
of all conflicting packages that had only one strong conflict for the considered
daily snapshots.

Figure 5.5 visualizes the age of the packages present in the Debian testing
distribution on 6 January 2015. There are in total 42,603 such packages (out
of a total of 67,748 packages that existed at some time during the entire
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Figure 5.3: Daily evolution of the number of packages in the testing distribution
having a strong conflict with 1, 2, 3, 4, 5 or >5 packages.
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Figure 5.4: Daily evolution of the number of packages in the stable distribution
having a strong conflict with 1, 2, 3, 4, 5 or >5 packages.
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considered period). Gaps in the histogram are caused by the freeze periods
during which addition of new packages is not allowed. The peak on the
right represents all packages that have been there since the beginning of the
considered period. It corresponds to 15.8% of all packages in the distribution
as of 6 January 2015.
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Figure 5.5: Age (in years) of packages that were present in the Debian testing
distribution on 2015-01-06.

Among all packages considered in Figure 5.5, let us focus on only those
16,101 packages that had a strong conflict at least once in their lifetime.
Figure 5.6 visualizes the number of conflicting days for these packages as
a percentage of their total lifetime. We observe that 6,063 (i.e., 37.66%)
packages were almost never conflicting (<5% of the time). Another peak
is observed at the other side of the spectrum, were we find 21.28% of all
packages (3,427 in total) that had at least one strong conflict >95% of the
time. More specifically, 18.7% of all considered packages (3,009 in total) had
strong conflicts during their entire lifetime.

Figure 5.7 shows the same information as Figure 5.6, but for the stable
distribution. Unsurprisingly, because packages in the stable distribution tend
to be stable, strongly conflicting packages in this distribution tend to remain
in conflict during their entire lifetime.
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Figure 5.6: Ratio of days that strongly conflicting packages in the Debian
testing distribution on 2015-01-06 were in conflict previously.
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Figure 5.7: Ratio of days that strongly conflicting packages in the Debian
stable distribution on 2015-01-06 were in conflict previously.
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5.3.2 How can we identify potentially problematic pack-
ages?

As previously discussed, some of the conflicts present in the repository are
there by design, but others are unjustified and harmful. Distinguishing the
good from the bad ones is a complex task that has traditionally required a lot
of manual investigation, with many issues going unnoticed for an extensive
amount of time. With this research question, we look for a way of automating
the detection of potentially problematic packages, and reducing the amount
of effort needed to nail down real issues.

a) Aggregate Analysis
A natural approach to identify potentially problematic packages is to look

for trend breaks in the evolution of the absolute or relative number of strongly
conflicting packages in the distribution: sudden increases in their number is a
clear hint that a problematic package has appeared, and sudden decreases
indicate that a problematic package has been fixed. Many discontinuities are
clearly visible in Fig. 5.1 and 5.2, with peaks ranging from a few hundreds to
over 4000 strong conflicts .

We retrieved all trend breaks that added at least 500 strong conflicts,
using the coinst-upgrade tool described in [155] that is able to identify the
root causes for the changes in conflicts between two repositories. We then
manually inspected each trend break, and checked it against the information
available from the Debian project, to determine the nature of the problematic
packages and the degree of seriousness of the problem, and paired the events
where each problematic package was first introduced and then removed.

The result of this analysis is summarized in Table 5.1. For each problematic
trend break, we report the date of the trend break, the number of new strong
conflicts that were introduced at that date, the main root cause of the problem,
the number of days it took to fix the problem, and the number of strong
conflicts that were resolved by the fix. We also report whether the root cause
of the problem would have been prevented by using one of the more recent
tools comigrate [157] and challenged [5] that have been developed to improve
the quality assurance process.

From Table 5.1 we observe that a few trend breaks were day-flies that
were fixed the day after their introduction, while several took a few weeks,
three took hundreds of days to fix, two have been fixed in several phases, and
two still remain unfixed today. Most of these issues would have been captured
by the comigrate tool if it would have been available at that time, and one
issue could have been anticipated using the challenged tool.

Interestingly, a few relevant trend breaks are not identifiable by any of
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the existing tools, while a check for trend breaks in the aggregate analysis (as
done here) would have drawn attention to them. This provides evidence of
the added value of our approach.

b) Individual Analysis
Once a trend break has been spotted, one still needs to identify manually

which are the potentially problematic packages. This process can be auto-
mated by studying their characteristics related to strong conflicts by resorting
to three simple metrics for each package:

• minimum number of strong conflicts

• maximum number of strong conflicts

• conflicting days over mean, i.e., number of days the package has more
strong conflicts than maximum+minimum

2

The motivation for choosing these simple metrics is that one should focus
on packages with a significant amount of strong conflicts , while at the same
time ignoring those packages that have such a large number of conflicts only
for a short period of time. Indeed, the latter case usually corresponds to
transient problems, like the day-flies that we were able to identify in the
previous aggregate analysis.

After ordering the packages with respect to these three metrics, we obtain
a list of potentially problematic packages, of which we presented the first
lines in Table 5.2. Interestingly, we find back most of the packages that
were already identified during the aggregate analysis (see Table 5.1), with
the important advantage that the proposed metrics can be computed fully
automatically, and do not require any manual inspection.
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Potentially problematic minimum maximum conflicting days
package conflicts conflicts over mean
libgdk-pixbuf2.0-0 0 675 1349
libgdk-pixbuf2.0-dev 0 3320 915
liboss4-salsa-asound2 2963 3252 891
liboss-salsa-asound2 1741 2664 862
klogd 3 502 709
sysklogd 3 719 639
ppmtofb 0 719 639
selinux-policy-default 0 719 633
aide 0 719 633
libpam-umask 0 720 546
libldap2 0 719 546
libaws2.2 0 719 546
libaws-bin 0 2247 315
libhugs-ldap 0 2620 44
bootchart 0 598 31
libopenblas-base 0 1171 28
systemd-sysv 5 1166 28
qtchooser 0 1166 28
libopenblas-dev 0 1166 28
ifupdown 0 598 26

Table 5.2: Top 20 of potentially problematic packages identified by three
simple metrics. Packages listed in boldface also appear as a root cause in
Table 5.1.
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5.3.3 How long does it take before a strong conflict is
introduced in a package?

For our second research question, we are interested in the first time a strong
conflict appears in a package. We hypothesize that newly introduced packages
have a high likelihood of introducing strong conflicts .

To verify this, we have to exclude all packages that were already present
at the first day of the considered period for which we have data, since we
have no way of knowing when a strong conflict first appeared in them. This
leaves us with 54,988 packages that are newly introduced somewhere during
the considered time-frame.

0

10000

20000

30000

Never Upon introduction After introduction

# 
P

ac
ka

ge
s

Figure 5.8: Number of newly introduced Debian packages, classified according
to when the first strong conflict was introduced for that package: never, upon
package introduction, or after package introduction.

These packages can be classified into three different categories, summarized
in Figure 5.8 and discussed below.

1. Most new packages (64.59%, corresponding to 35,516 packages) never
encounter a strong conflict .

2. For the 19,472 packages (i.e., 35.41%) that do encounter a strong conflict ,
in the majority of the cases (52.91%, corresponding to 10,302 out of
19,472 packages) a strong conflict is already present at the moment
of introduction of the package.
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3. For the remaining 9,170 strongly conflicting packages, a strong conflict
was introduced at least one day (but often much later) after package
introduction. The distribution of the number of days before the first
strong conflict is introduced has a median value of slightly below one year
(326 days to be precise) and follows a decreasing trend (see Figure 5.9).
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Figure 5.9: Frequency distribution of the number of days (x-axis) before strong
conflicts arise in newly introduced packages. Packages without strong conflicts
or containing strong conflicts at the day of their creation are excluded.

It is important to note that the results in Figure 5.9 are an under-ap-
proximation, since packages that have not encountered a strong conflict
during the considered period may still become strongly conflicting in the
future. Survival analysis takes into account this probability. Figure 5.10
shows the Kaplan-Meier curve. It shows the cumulative probability S(t) that
a package stays without conflicts for at least t years. The curve shows that a
package has around 80% of chance of never gaining any conflicts in its first 10
years of existence. Moreover, as the curve appears to converge and because
of its shape, the longer a package has survived without strong conflicts , the
less likely it becomes that a strong conflict will appear.
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Figure 5.10: Kaplan-Meier curve for the introduction of strong conflicts in
non-conflicting packages. The time scale on the x-axis is expressed in number
of years.

5.3.4 What is the effect of strong conflicts on the longe-
vity of packages?

First, we study whether the absence of strong conflicts upon introduction of
a package has an effect on its longevity. For the same reason as in RQ2 we
use survival analysis to answer this question. We analyze only those 54,988
packages that are newly introduced after the beginning of the considered
period, because we cannot know the age of the other packages. Figure 5.11
shows the Kaplan-Meier curves for the cumulative probability of the survival
function. The green curve shows the survival probability for packages without
strong conflicts upon introduction, the red curve shows the probability for
packages strong conflicting at the time of package introduction.

We used the survdiff function from the R package survival to test for
difference with statistical significance between two survival distributions.
This function implements the Gρ family of non-parametric tests [72]. If ρ = 0
(as in our case), this becomes a log-rank test, also known as a Mantel-Haenszel
test [110, 129]. Using this test, we found that packages for which a strong
conflict has been introduced after introduction of the package live longer than
packages that already had a strong conflict upon introduction. When looking
at the figure, however, the difference is fairly small, and becomes smaller as
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Figure 5.11: Kaplan-Meier curves of the longevity (in years) of Debian testing
packages with strong conflicts upon (in red) or after (in green) the time the
package got introduced.

the package survives longer.

Secondly, we study whether the absence of strong conflicts during the
entire observed lifetime of a package has an effect on its longevity. Figure 5.12
shows the Kaplan-Meier curve for the survival probabilities. Again, a log rank
test reveals a difference with statistical significance: packages suffering from
strong conflicts during their lifetime tend to live longer than packages without
strong conflicts. This difference is in the opposite direction of what one
would intuitively expect. When looking at the figure, however, the observed
difference appears to be negligible.

Thirdly, we compare the longevity of packages that were strongly conflicting
during their entire lifetime (i.e., 100% of the time) with packages that only
had strong conflicts occasionally (<100% of the time). Figure 5.13 shows
the Kaplan-Meier curve for the survival probability. Again, a log rank test
reveals a difference with statistical significance: packages that are strongly
conflicting occasionally tend to live longer than packages that are strongly
conflicting during their entire lifetime. In this case, the difference is much
more pronounced. Nevertheless, a package which is conflicting during its
entire lifetime has still more than 25% probability to survive for more than
10 years.

64



5.3. Results

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Years

P
ro

ba
bi

lit
y

Conflicts
No conflict

Figure 5.12: Kaplan-Meier curves of the longevity (in years) of Debian testing
packages without (in green) or with at least one strong conflict (in red) during
their lifetime.
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Figure 5.13: Kaplan-Meier curves of the longevity (in years) of Debian testing
packages with occasional strong conflicts (green) versus packages with strong
conflicts during their entire lifetime (red).
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RQ4 How long does it take before all conflicts get removed
from a strongly conflicting package?

This question is the counterpart of question RQ3 where we studied how long
packages survive. With RQ4 we analyze how long strong conflicts survive.
For this analysis, we do not include those packages that were already strongly
conflicting at the beginning of the considered period. We therefore exclude
220 packages that already existed at the beginning of the studied period,
that still existed at the end of the considered period, and that contained
strong conflicts all their lifetime. Because of this exclusion, we might slightly
underestimate the probability for a strong conflict to be long-lived.
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Figure 5.14: Kaplan-Meier curve of the probability (over time) for all strong
conflicts to get removed from packages.

Figure 5.14 presents the Kaplan-Meier curve of the probability S(t) of
a package to remain strongly conflicting for at least t years. We make
the distinction between strong conflicts that were introduced upon package
introduction and those that were introduced after package introduction. The
survival probability for the latter starts with a steep descent. Indeed, most
strong conflicts introduced after package introduction do not last very long:
50% of them stay less than 24 days. In contrast, 50% of the strong conflicts
that were already present upon package introduction stay more than 11
months! Similarly, strong conflicts added upon package introduction have a
15% probability to survive at least 10 years, while those added after package
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introduction have less than 5% probability of surviving 10 years or more.
Even if most strong conflicts are short-lived, some packages might continue

to have strong conflicts for a long time, and it may not be possible to remove
these conflicts. An example of such a package is courier-imap, which provides
an IMAP mail server and which is in conflict with any other package providing
an IMAP server.
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Figure 5.15: Number of Debian testing packages for which at least one strong
conflict got introduced and for which all strong conflicts were removed after,
respectively: less than one week (blue); between one week and a month (red);
more than a month (purple).

Because of the short-lived nature of strong conflicts , we analyze the history
of the conflict resolution times in Figure 5.15. As in Figure 5.1, vertical lines
indicate the start date and end date of each freeze period. Regardless of
the resolution time, we observe that strong conflicts do not get introduced
during freeze periods. This is indeed what one would expect, since the freeze
periods are meant to fix bugs and resolve problems, rather than introducing
new problems. When comparing the dates of strong conflict introduction
for those packages with short resolution times (less than a week) to those
packages with longer resolution times (more than a week), we cannot reveal
any specific pattern. Except perhaps for the fact that, since 2011, the
introduction of strong conflicts in packages with short resolution times tends
to be concentrated just before or just after a freeze period.
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RQ5 What causes frequent appearance and disappear-
ance of strong conflicts?

We now focus on the events that cause a package to become strongly conflicting
or to loose all of its strong conflicts .

During the considered period, there were 26,266 packages that became
strongly conflicting 49,768 times. Similarly, there were 25,178 packages that
lost all their strong conflicts 51,248 times.

< 50% 60% 70% 80% 90% 100%
1 2 2 3 4 20

Table 5.3: Distribution of the number of times each package became strongly
conflicting .

< 50% 60% 70% 80% 90% 100%
1 2 2 3 4 21

Table 5.4: Distribution of the number of times each package lost all its strong
conflicts .

Tables 5.3 and 5.4 show that most packages became strongly conflicting
or lost all their strong conflicts only once, while for only very few packages
this happened many times (up to respectively 20 and 21 times). We manually
analyzed the packages with most repeated strong conflict additions and
removals: erlang, openoffice.org-thesaurus-en-us and a few related packages.
The explanations we found for these frequent state changes are twofold.

A first reason is that new versions of related packages can get introduced in
the testing distribution at slightly different times. This introduces temporary
incompatibilities because there is no explicit dependency between the involved
related packages. The old Debian migration tools could not cope with these
situations, while the more recent comigrate tool would prevent this. This
happened twelve times for the packages erlang and erlang-doc-html, and
four times for the packages openoffice.org-thesaurus-en-us and openclipart-
openoffice.org (later renamed openclipart-libreoffice).

A second reason for repeated addition and removal of strong conflicts is
that some packages have a large number of dependencies, and are hence more
likely to be impacted. This was especially the case for OpenOffice packages,
but also happened for erlang that depends on initscripts which got transient
strong conflicts three times.
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5.4 Discussion

With RQ1 we have shown that a simple approach based on monitoring
trend breaks in the number of strong conflicts present in the distribution is
able to identify several significant disruptions in the past history of Debian
packages. Manual inspection of these issues revealed that most of them uncover
medium to serious issues in the quality of the repository, as summarized
in Table 5.1. Many of these issues would have been prevented by using
recent tools like comigrate [157] and challenged [5], which are now being
gradually introduced in the Debian QA process. This constitutes strong
evidence of the relevance of these tools, which may be adapted to other kinds
of repositories. We also showed that some of the uncovered issues would not
have been captured by any of the existing tools, while a simple check for
sudden increases in the number of strong conflicts would spot them. This
provides strong motivation for adding such a check in Debian’s QA process,
and more generally to the QA process for all GNU/Linux distributions.

For questions RQ2, RQ3 and RQ4 we studied the relation between the
presence of strong conflicts on the longevity of packages. To this extent we
made use of the statistical technique of survival analysis.

RQ2 revealed that, for all packages in the Debian testing distribution that
were newly introduced during the considered analysis period, strong conflicts
only occurred in about one third of them (35.41%). We also observed that,
the longer a package has survived without strong conflicts , the less likely it
becomes that strong conflicts will appear.

With RQ3 we assessed the effect of strong conflicts on the longevity of
packages. Packages that were introduced conflict-free tend to live longer than
packages that already had a conflict at the moment they were introduced, but
the observed difference is small. For those packages where strong conflicts
did occur, in roughly half of the cases strong conflicts were already present at
the moment of package introduction.

Occasionally conflicting packages tend to live longer than packages that
are always in conflict, with a clear observed difference. Hence, it makes sense
to focus on packages that are always conflicting, to detect as early as possible
those that need to be dropped.

With RQ4 we studied the time it takes for all strong conflicts in a package
to disappear. We observed that for those packages that already had strong
conflicts upon package introduction, it takes much longer (if at all) before
all these strong conflicts get removed than for packages that started off
without any strong conflicts. Although this may seem contradictory at
first, it is consistent with the intuition that a strong conflict present at the
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moment of package introduction may be actually needed to express intended
incompatibilities, and does not necessarily represent a real defect. This also
explains why many strong conflicts never get removed.

We also observed that, if a previously existing package becomes strongly
conflicting , it often does not take a long time before these conflicts get removed
(less than 24 days in half of the cases), which is strong evidence that these
conflicts are not intended incompatibilities, but defects in the repository
that need to be fixed. Their presence is a clear indication of the need of
incorporating better tools in the QA process.

Finally, our analysis of the packages that most frequently switched from
conflicting to non conflicting (RQ5) showed again clearly the need for modern
tools like comigrate or an improved version thereof that are able to prevent
the appearance of new incompatibilities. Without such tools, several packages
get impacted and fixed over and over again in every new version.

5.5 Threats to Validity

The foremost threat to validity relates to generalizability. We have restricted
ourselves to Debian in this chapter, but the lessons learned from our study of
the evolution of package incompatibilities could be applied to other package-
based software distributions as well. Such insights, as well as the tools and
best practices used for reducing the extent of the problem (e.g., comigrate in
the context of Debian) could help maintainers of other Linux distributions to
improve upon their practices and increase the quality of their repositories.

In most of our analysis, we had to exclude those packages that already
existed before the considered 10-year period, because earlier data is unfortu-
nately no longer available, and those packages that continue to exist after the
considered period. If we could include these packages, the obtained results
might change. We are fairly confident, however, that the main conclusions of
our analysis will remain the same, given the fact that the evolution history
over time remained fairly stable.

Our analysis is based on the output produced by the coinst tool. The
risk that possible bugs in this tool may affect the outcome of our results is
limited because the algorithms underlying coinst have been formally verified in
Coq [147], and it has been used repeatedly in the past by different researchers.
Moreover, conflicts identified by coinst can be independently checked using
other existing tools, like dose-deb-coinstall from the Dose suite used regularly
on Debian repositories [7].

Finally, the scripts that we have developed for our empirical analysis may
still contain some bugs, and the obtained results may be biased by some
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simplifying assumptions we have made during our analysis.

5.6 Conclusion

The incompatibilities among packages known as strong conflicts are an im-
portant problem in package-based distributions, and have been studied in a
series of recent research works [155–157]. Leveraging the coinst, coinst-upgrade
and comigrate tools issued from this research work, we empirically analyzed
the evolution of strong conflicts among packages for all the available history
of the Debian package-based software distribution for the i386 architecture,
which spans a decade.

While the number of packages in the Debian testing distribution increases
linearly, the ratio of packages with strong conflicts stays more or less constant,
with occasionally important decreases or increases in the number of strong
conflicts . This reflects the fact that Debian maintainers make a specific effort
to reduce strong conflicts as much as possible, which must be accepted only
when they describe component incompatibilities that cannot be otherwise
eliminated.

Using the statistical technique of survival analysis, we investigated the
moment and cause of introduction and removal of strong conflicts in Debian
packages, as well as the relation with the packages’ longevity. We found
limited evidence that packages containing strong conflicts live longer than
those without. We also found evidence that:

• packages that are always in strong conflict have a smaller survival
probability than those who are not;

• the longer a package has survived without strong conflicts , the less likely
it is that a strong conflict will appear;

• strong conflicts that are already present upon package introduction tend
to stay present much longer than strong conflicts that are added later;

• half of the strong conflicts that appear after package introduction stay
a short amount of time (< 1 month).

These findings confirm the importance of adopting tools and techniques
that prevent the introduction of strong conflicts. Without these tools, the
historical analysis reveals that a lot of defects get regularly reintroduced, with
peaks reaching tens of times for the same package.

Using metrics related to the presence, amount and duration of strong
conflicts, we could identify several packages that have been reported as
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problematic by the Debian community in the past. We have shown how
various of these issues would have been prevented by using recently developed
tools, but several issues spotted by our metrics are not captured by any
existing tool. This is a strong motivation for introducing these metrics in the
future into the repository quality assurance process. As an added bonus, the
simplicity of our metrics makes them easily transposable to other package
repositories.
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Analyzing the Topology of the R

Ecosystem

This chapter explores the ecosystem of software packages for R, one of the
most popular environments for statistical computing today. We empirically
study how R packages are distributed on the different major repositories:
CRAN , BioConductor, R-Forge and GitHub. We also explore the role and
size of each repository, the inter-repository dependencies, and how these
repositories grow over time. With this analysis, we provide a deeper insight
into the extent and the evolution of the R package ecosystem.

This chapter is mainly inspired by a workshop paper [43] presented at
IWSECO-WEA 2015 and a conference paper [44] presented at the SANER
2016 conference.



Chapter 6. Analyzing the Topology of the R Ecosystem

6.1 Introduction

The R package management system provides an easy way to install third-party
code and datasets alongside tests, documentation and examples [76]. The
main R distribution installs a few base and recommended packages.

Thousands of additional packages are developed and distributed through
different repositories. CRAN , the Comprehensive R Archive Network (see
cran.r-project.org), constitutes the official R repository offering both
source and precompiled stable packages compatible with the latest version of
the R environment. Because of CRAN ’s longevity, its size and its historical
role of being the official distribution platform for R packages, developers
often choose to distribute their packages on CRAN . As reported by Karl
Broman in his insightful R package tutorial [24], “The main advantage to
getting your package on CRAN is that it will be easier for users to install
(with install.packages). Your package will also be tested daily on multiple
systems.”

Some aspects of CRAN ’s package policy, however, turn out to be quite
restrictive in practice. For example, CRAN imposes cross-platform com-
patibility, it discourage packages to have dependencies outside of CRAN , it
imposes packages to stay up-to-date with CRAN ’s most current environment
and with the latest version of R. This refrains, or even prohibits, certain
package developers of getting their packages on CRAN :

• “It can be a painful process, so you want to get your package in order
before you submit.” [24]

• “Even with our current policy of aiming for back-compatibility we get a
lot of complaints that we are asking too much.” [133]

• “The non-transparent nature of the CRAN submission / rejection process
is particularly at issue.” [62]

Moreover, the argument of getting a significantly increased visibility when
distributing one’s package on CRAN is questionable [24]: “It used to be that
putting your package on CRAN also gave it some exposure, but with >6000
packages, that’s no longer quite true. To get the word out about your package,
I’d recommend twitter, writing a blog, or writing a paper [...].” As such,
there is no longer a strict need to rely on CRAN as the official platform for
distributing R packages.

R packages can also be distributed on other repositories such as Bioconduc-
tor (bioconductor.org) and several smaller repositories such as Omegahat .
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There are also commercial R packages being sold by companies such as Revolu-
tion Analytics. Finally, many open source R packages are being developed on
public version control repositories such as R-Forge (dedicated to R packages)
and GitHub (general purpose). Other minor development repositories exist,
such as rforge1, but often far less packages and/or few active ones.

Given the increasing popularity of GitHub as a platform for distributed
software development (> 35 million repositories as of April 2016, of which
several thousands of actively maintained R packages) this chapter sets out
to explore how GitHub is used for developing and distributing R packages.
Leek’s blog [99] summarizes some of the concerns: “one of the best things
about the R ecosystem is being able to rely on other packages so that you don’t
have to write everything from scratch. But there is a hard balance to strike
with keeping the dependency list small.”

In this chapter we study the topology of the R ecosystem in order to
have a better picture of how the different package repositories are structured
together. In particular, we wish to get insight in the effect of other package
repositories on CRAN .

Additionally, we wish to know whether the increasing popularity of Git-
Hub as a host for developing many R packages has become a “game changer”.
Indeed, it is quite straightforward to develop and install packages directly
from GitHub, possibly avoiding the need for having one’s package distributed
on CRAN or BioConductor.

The R community has raised concerns about the way R packages are
currently distributed, what problems current package management systems
suffer from, and how they could be solved [126]. In addition, the large number
of available non-archived packages (> 8,400 in April 2016) is becoming a
bottleneck [76] and leads to package dependency problems: “the number
of packages on CRAN and other repositories has increased beyond what
might have been foreseen, and is revealing some limitations of the current
design. One such problem is the general lack of dependency versioning in the
infrastructure.” [126]

6.2 Methodology

Taking the point of view of a R package user, we first focus on the following
two research questions regarding the general topology of the major R package
distributions:

1. Where and how are packages developed and distributed?
1https://rforge.net/, not to be confused with R-Forge
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2. How do packages depend on one another?

To answer these questions we will study the size of the different major R
package distributions and how they depend upon them. For that we extend
our conceptual framework from Chapter 4 with a relation of dependency
between distributions.

Because the same package may belong to different repositories2, we define
a total order > on the set E = {CRAN , Bioconductor software, Bioconductor
datasets, GitHub, R-Forge, Unknown} such that CRAN > Bioconductor
software > Bioconductor datasets > GitHub > R-Forge > Unknown. This
total order privileges the distributed version of a package over its development
version. For example, if a package p1 on GitHub depends on a package p2 that
belongs to both CRAN and GitHub, it will be counted as a dependency from
GitHub to CRAN.

Using this total order we can introduce some new dependency terminology.

Notation 6.2.1 (Dependencies between distributions). Let α, β ∈ E be two
R distributions. We define.

depst(α, β) = {(s1, s2) ∈ αt × βt |
s2 ∈ dep(s1, t, β) ∧ @γ ∈ E : (s2 ∈ γt ∧ γ > β)}

dependsOnt(α, β) =
|{s1 ∈ αt | ∃s2 ∈ βt : (s1, s2) ∈ depst(α, β)}|

|α|

requiredByt(α, β) =
|{s1 ∈ αt | ∃s2 ∈ βt : (s2, s1) ∈ depst(β, α)}|

|α|
|depst(α, β)| counts all dependency relationships from packages in α to

packages in β, dependsOnt(α, β) gives the fraction of distinct packages in α
depending on at least one package in β, and requiredByt(α, β) the fraction of
distinct packages in α on which at least one package in β depends.

We look more deeply at GitHub and how it is influencing the R ecosystem.
In particular we want to measure to which extent do R developers distribute
their packages on GitHub.

To analyze the extent to which GitHub is used as a package distribution
platform, we intend to show that GitHub is becoming more and more impor-
tant, and that despite the fact GitHub packages distributed on CRAN are

2For example, GitHub may store the development version while CRAN may contain
the stable release version of the package
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generally older than other GitHub packages, there are numerous packages
including instructions to install them from GitHub. In order to achieve this
goal we study the following questions:

• How important has GitHub become for R packages? We provide evi-
dence that the number of new R packages on GitHub is growing faster
than the number of new R packages on CRAN .

• How old are GitHub R packages distributed on CRAN? We provide
evidence that GitHub packages that are not distributed on CRAN are
younger than those distributed on CRAN and that they form a distinct
population. We also show that the age of a package cannot be used as a
major discriminant in a model to predict the distribution of a package.

• Which GitHub R packages are distributed on GitHub? We show that
many GitHub packages contain instructions to install them from GitHub
and that thus many of them are expected to be distributed on GitHub.

6.3 Results

6.3.1 Topology of major R package distributions

Where and how are R packages developed and distributed?

Figure 6.1 shows the overlap of R packages on the different major distributions.
The overlap between CRAN and Bioconductor is very limited. Both
package distributions only have 4 packages in common, corresponding to 0.4%
of all considered Bioconductor packages and only 0.06% of all considered
CRAN packages. This is expected as Bioconductor is a package distribution
similar to CRAN but specialized in bioinformatics.

Many packages on CRAN also appear on GitHub, since both repositories
serve different purposes (distribution and development, respectively). We also
observe in Figure 6.1 that the intersection of packages that can be found on
CRAN and GitHub is non negligible. 18.1% (1157+1

6411
) of all considered CRAN

packages can also be found on GitHub. 22.5% (1157+1
5150

) of all R packages
on GitHub are also present on CRAN . This relatively large proportion of
overlap can be explained by the fact that CRAN is only a distribution
platform, and cannot be used for collaborative development. Hence, many
R packages are developed on GitHub, while stable releases of these
packages are published on CRAN . We observe something similar when
comparing Bioconductor with GitHub, and for the same reasons. Indeed,
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Figure 6.1: Intersections of R packages belonging to GitHub, CRAN , Biocon-
ductor and R-Forge in March 2015
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Figure 6.2: Monthly number of newly created repositories on GitHub contain-
ing R packages.

20.6% ( 203+1
203+1+3+790

) of all packages on Bioconductor have a counterpart on
GitHub.

R-Forge has 12.3% (266+6
2216

) of its packages in common with GitHub, while
as much as 45.2% (158+843

2216
) of its packages are in common with CRAN . This

shows that R-Forge serves as a development platform for some of
the packages that get distributed through CRAN . This is not true
for Bioconductor : only 1.1% (6+19

2216
) of all R-Forge packages are also available

on Bioconductor .
One of our goals is to study whether development forges like GitHub are

overtaking CRAN and Bioconductor as a primary source of R packages. To
do so, we consider the set of all R packages that are available on GitHub
on 17 February 2015, and study since when they were created and had a
counterpart in other R package repositories.

Figure 6.2 suggests that the monthly number of newly created repositories
for CRAN and Bioconductor packages on GitHub is slightly increasing over
time. This seems to imply that, over time, developers of packages that
are distributed on CRAN and Bioconductor decide to use GitHub
as a host for developing their packages. This does not seem to affect
the growth of the packages in the CRAN and Bioconductor distributions.
Figure 6.3 shows that the number of packages in GitHub ∩ CRAN grows
faster than the number of packages distributed on CRAN .
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We did not find evidence of packages disappearing from CRAN or Bio-
conductor due to their migration to GitHub. As shown in Figure 6.1, in
March 2015 CRAN and Bioconductor still remain the primary sources for
the distribution of stable R packages. As such, development of R pack-
ages through GitHub seems to complement distribution of packages
through CRAN and Bioconductor , and perhaps even has a catalyst ef-
fect.
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Figure 6.3: Evolution of the number of R packages in CRAN , GitHub and
Bioconductor .

Figures 6.2 and 6.3 also reveal that GitHub is increasingly hosting R
packages that do not have a counterpart in CRAN or Bioconductor .
Many of these packages are no longer actively maintained today. Those that
do, may be developed for personal use only, or could still be unstable but at
some point in the future may turn into stable packages that could become
distributed in CRAN or Bioconductor .

How do packages depend on one another?

If an R package depends on another, do these packages belong to the same
repositories, or do we observe many inter-repository dependencies? We expect
most of such inter-repository dependencies to go towards CRAN since it is the
official R package distribution. We also expect many dependencies from other
repositories towards Bioconductor since it is an active package distribution
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that offers the same quality checks as CRAN , and also because it contains
many useful datasets. Therefore, when considering dependencies to packages
belonging to Bioconductor , we also count dependencies to dataset packages
belonging to Bioconductor .

Table 6.1 presents metrics for all pairs of considered R package reposi-
tories. Unknown represents those dependencies for which we did not find a
matching package name in any of the considered repositories. This value
was especially high for GitHub (140 packages with 156 dependencies to 89
unknown packages).

CRAN is self-contained: the majority of dependencies of its packages
stay within CRAN : 61% of all CRAN packages depend on another CRAN
package. This is expected, since otherwise the packages would not pass
the R CMD check. Note that only 24.9% of all CRAN packages are
required by other CRAN packages.

Bioconductor depends primarily on CRAN and on itself :
58.8% of all Bioconductor packages depend on CRAN packages, while
77.1% of all Bioconductor packages depend on other Bioconductor pack-
ages. Similar to CRAN , 26.5% of all Bioconductor packages are required
by other Bioconductor packages. We also observe that 9.3% of Biocon-
ductor software packages depend on Bioconductor datasets.

GitHub and R-Forge depend primarily on CRAN : 87.1% of
GitHub dependencies and 86.4% of R-Forge dependencies go to CRAN
packages.

This shows that CRAN is still at the center of the ecosystem
and that it has a minority of packages forming a core required by other
packages both from CRAN and other sources.

6.3.2 To which extent do R package developers distribute
their packages on GitHub?

How important has GitHub become for R packages?

According to githut.info, in the last quarter of 2014, R was the 12th most
represented language on GitHub (in terms of number of active repositories).
This is a major increase with regards to. the last quarter of 2013, when R
was only ranked 22nd.

Figure 6.4 shows the number of GitHub and CRAN packages on June
1, 2015. At this date, CRAN still hosts more packages than GitHub.
There are 910 packages belonging to both package repositories. This represents
14.0% of all CRAN packages that are also available on GitHub, and 20.2% of
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Figure 6.4: Number of R packages by source in June 2015

all GitHub packages that are also distributed on CRAN . This large overlap can
be explained by the fact that both repositories still serve different purposes
for a part of the R packages. One can expect that those R packages are
developed on GitHub, while their stable releases are published on CRAN .
This is for example the case for Amelia, ggplot2, dplyr, . . . Our interviews [114]
with R package maintainers that were active on both GitHub and CRAN
confirmed this way of working.

Figure 6.5 shows the number of newly created R packages, by month,
on each platform. For CRAN , we see a more or less stable trend for the
monthly number of new packages, with an exception of a big peak in the
second half of 2012, due to the introduction of package namespaces in R. In
contrast, for GitHub we see an increasing trend in the monthly number of new
packages. Even more, since July 2014 the number of new R packages on
GitHub appears to be surpassing those on CRAN . Since early 2015,
the number of newly created packages is even more than three times higher
on GitHub than on CRAN .

In summary, GitHub already hosts many R packages, and there is an
important acceleration of the number of new packages appearing on
GitHub each month.
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Figure 6.5: Number of new R packages, by month

How old are GitHub R packages distributed on CRAN ?

It is difficult to identify if a GitHub package is still in its development stage
or if it is ready to be distributed.

We expect GitHub to be used as a development platform and CRAN as a
distribution platform, so many packages will only end up in CRAN after some
time, if they are considered to be sufficiently stable for being distributed and
pass all necessary checks. This is, we expect that GitHub packages that are
distributed on CRAN are older than GitHub packages that are not distributed
on CRAN .

We define the age of a GitHub package as the time between its very
first version and the latest known commit. We compared the age of GitHub
packages to see if this criterion can be used to distinguish packages that are
already distributed on CRAN from those which are not.

Figure 6.6 shows the distribution of the age of all 4,512 GitHub R packages,
as well as the distribution of those 3,602 R packages not found on CRAN ,
and the distribution of the 902 R packages also available on CRAN . We
statistically compared the age of the sample of GitHub packages that are
distributed on CRAN with the age of the sample of those that are not.
Since the samples were not normally distributed, we carried out a one-sided
non-parametric Mann-Whitney-U test.
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Figure 6.6: Violin plot (using a kernel density estimate) of the distribution of
the age of GitHub packages.

It is used to test the null hypothesis that the distribution of both pop-
ulations are equal, or alternatively, whether observations in one population
tend to be larger than observations in the other. We choose as alternative
hypothesis that the population of GitHub packages distributed on CRAN is
older than the population of GitHub packages that are not distributed on
CRAN . The motivation behind this choice is logical: we expect GitHub to
be used as a development platform and CRAN as a distribution platform,
so many packages will only end up in CRAN after some time, if they are
considered to be sufficiently stable for being distributed and pass all necessary
checks.

As expected, the null hypothesis was rejected with significance level
α = 0.01. More specifically, we observed that the majority of the packages
(>75%) that are not distributed on CRAN are younger than the
median of GitHub packages that are distributed on CRAN . While
the median age of GitHub packages distributed on CRAN is 448 days old,
only 42.5% out of the 1,107 GitHub packages that are older than 448 days are
actually distributed on CRAN . This is, the age of a package cannot be used
as a major discriminant in a model to predict its distribution on CRAN .

In summary, GitHub packages distributed on CRAN are older than GitHub
packages not distributed on CRAN , and constitute a distinct population.
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However, the age of a GitHub package cannot fully explain its distribution
status.

Which GitHub R packages are distributed on GitHub?

We would like to study how many R packages are expected to be distributed
and installed from GitHub. It is, however, difficult to identify if a GitHub
package is still in its development stage or if it is ready for distribution. As
far as we know, there is no sound and complete characterization of when an
R package is ready to be distributed on GitHub.

As an approximation, we looked for specific installation instructions from
GitHub within all of the README files at the root of their GitHub repositories.
We analyzed these README files using a regular expression corresponding to
the use of the function install_github. Our results could include false positives
(e.g., “this package cannot be installed with install_github(...)”). However, a
manual verification of our results for many packages did not reveal such false
positives.

We are also aware that our approach may be inaccurate, since R packages
being distributed on GitHub may not necessarily have a README file that
mentions install_github. Therefore, we can only compute a lower bound of
the proportion of R packages that are distributed on GitHub. We obtained
that 40.9% of all R packages on GitHub have a README file that
contains instructions to install the package from GitHub. These
packages correspond to 44.9% of the GitHub packages that are also on CRAN ,
and to 39.9% of the GitHub packages that are not on CRAN .

In summary, many GitHub packages are intended to be distributed on
GitHub as they contain instructions to install them from GitHub.

6.4 Discussion

The success of GitHub as a development platform for software packages seems
obvious. It is more difficult, however, to quantify the use of GitHub as a
distribution platform. Many package developers are already resorting to Git-
Hub to distribute their software or libraries using tools like NPM or Bower.
In addition to these tools, many packages can be downloaded directly from
GitHub without having to rely on a package manager.

For R packages in particular, however, there is no commonly accepted
package manager for GitHub. There are neither automatic processes nor
absolute assertions that can be used to identify which of the R packages on
GitHub are intended to be distributed.
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Nevertheless, the interviews with R package maintainers confirmed that
they actively use GitHub for distributing packages, for a variety of reasons.
For example, some R package maintainers decide to host their packages
on GitHub rather than CRAN , because their packages depend on external
packages that are not accepted by CRAN . This is the case for the ANTsR
package (stnava.github.io/ANTsR/) that depends on cmake, as well as some
packages that depend on commercial packages not available in CRAN .

From a quantitative point of view, we found many R packages that are
distributed on GitHub, providing specific installation instructions. We also
found that packages that are only available on GitHub are younger than the
GitHub packages that are also distributed on CRAN .

6.5 Threats to Validity

We only considered a subset of the R ecosystem, consisting of only 4 package
repositories, but covering more than 12,000 distinct R software packages.
While other R package repositories exist, given their small size we have not
included them in our analysis. The Omega Project for Statistical Computing
(www.omegehat.org) hosts around one hundred R packages. RForge (rforge.
net), not to be confused with R-Forge, provides a collaborative environment
for R package developers based on SVN repositories, and contains less than two
hundred packages, many of which are no longer active. GitHub competitors
like BitBucket (bitbucket.org), Gitorious (www.gitorious.com) and Gitlab
(gitlab.com) are considerably less frequently used for hosting R package
development.

While for Bioconductor we explicitly excluded (or treated differently)
the packages containing datasets, we were not able to do the same for the
other repositories, since we found no automated way to distinguish “ordinary”
software packages from datasets. If an R package contains both data and
functions, it is hard to decide whether it should be regarded as a software
package or a dataset.

For part of our analysis, we relied on information extracted from SVN or
Git, or from hosting services like GitHub. There are many potential perils
and pitfalls that should be taken into consideration when doing so [20, 84].
Some of them can be avoided, others are inherent to the limitations of the
considered version control systems or hosting services. For example, how
should forking be taken into account? In our analysis, we excluded all forks.
We also relied on GithubArchive as a proxy for GitHub data to extract events,
but we cannot guarantee that this data is fully consistent and complete. We
also based ourselves on the packages still existing in GitHub. We were not
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able to extract historical information from GitHub repositories that have been
removed before.

For R packages hosted on GitHub, we assumed that their DESCRIPTION
file always resides in the root directory of each Git repository, because this
is where functions like devtools::install_github expect packages to be located,
and because this avoided inclusion of repositories containing R code but that
are not R packages. It may, however, have led to the exclusion of some R
packages. We also found that some GitHub accounts containing R packages
(in particular, accounts cran and rpkg) actually served as partial mirrors of
CRAN , or as a mean to expose R code to GitHub. These accounts were
excluded from our analysis, but we have no guarantee that other accounts
may also be mirrors of R packages developed or distributed elsewhere.

The chosen date of the R package ecosystem snapshot, and the chosen
duration for the historical analysis may influence our results. Repeating
the same analysis for other dates would allow us to confirm the observed
results. For the historical analysis of the GitHub data, we based ourselves
on the packages still existing in GitHub in February 2015. We were not able
to extract historical information from GitHub repositories that have been
removed before that date.

It is not trivial to determine whether an R package available on GitHub
is ready for distribution. For all identified R packages we checked whether
they were ready for release by verifying the presence of a README file with
specific installation instructions. Although a manual verification did not
reveal any false positives, there may have been false negatives that we have
not considered.

6.6 Conclusion

In this chapter, we studied the ecosystem of R packages beyond the official
CRAN repository. We also considered the BioConductor package distributions,
and we explored two R package development forges: GitHub and R-Forge.
In total, we analyzed the origin and the dependencies of more than 12,000
packages that were still available in March 2015.

We observed that CRAN remains the center of the R package ecosystem,
since its packages do not depend on external packages, while BioConductor,
R-Forge and GitHub strongly depend on CRAN packages. BioConductor
also contains many packages required by the others, but with an order of
magnitude difference compared to CRAN .

We also observed that GitHub is becoming increasingly used as a col-
laborative development platform for R packages, both for packages already
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distributed on CRAN and BioConductor, as well as for new packages that do
not have any counterpart in the considered distributions or forges. We did
not observe any positive or negative effect of this increased use of GitHub on
the growth of the number of CRAN or BioConductor packages.

Driven by its increasing popularity, we empirically studied more closely
the use of GitHub as an alternative or complement to CRAN for R package
development and distribution. We observed that more and more R packages
are hosted on GitHub. While the GitHub packages distributed on CRAN
tend to be older than those that are not, their age cannot fully explain
whether they are distributed through CRAN . Additionally, many R package
developers make use of GitHub as a distribution platform. Their packages
contain instructions to be installed from GitHub, and are often exclusively
distributed through GitHub.
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Analyzing the Maintainability of R

Packages

When writing software, developers are confronted with a trade-off between
depending on existing components and re-implementing similar functionality
in their own code. Errors may be inadvertently introduced because of depen-
dencies to unreliable components, and it may take longer to fix these errors.
In the previous chapter we studied the general shape of the R ecosystem
and showed that distribution of packages mainly happens on two repositories:
CRAN and GitHub. In this chapter, we study how dependencies and package
updates impact maintainability in these two major distributions.

First, based on an analysis of package dependencies and package status,
we present results on the causes of errors in CRAN packages, and the time
that is needed to fix these errors. Secondly we show that packages hosted on
GitHub depend on most active CRAN packages. We conjecture that GitHub
packages might experience even more maintainability problems than CRAN
packages.

This chapter is mainly inspired by two conference papers [37,44] presented
at the CSMR-WCRE 2014 and SANER 2016 conferences.
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7.1 Introduction

When writing software, developers may want to reuse code that has been
written by someone else rather than writing it again. Developers can do
this by directly copying the code or by depending on it (e.g., using a soft-
ware library). However, when there is not enough coordination between
the developers of dependent software components, maintainability problems
may arise: components may cease to function correctly because of changes
made to the component(s) they depend upon. This can become particularly
problematic in large software ecosystems containing thousands of different
components maintained by thousands of different maintainers, some of which
being considerably less active and responsive than others.

The CRAN package repository, which is the primary source of packages
used by the R community, is experiencing such problems.

As seen in Chapter 6, while GitHub is growing more rapidly as a R package
hosting platform than CRAN , the latter is still the center of the R ecosystem.
CRAN size is considered by some as “too many” [76]. In addition, problems
with the dependency versioning system of R have been reported and possible
directions for improvement have been proposed [126].

Again, some aspects of CRAN ’s package policy, however, turn out to be
quite restrictive in practice. This refrains, or even prohibits, certain package
developers from getting their packages on CRAN .

This chapter aims at understanding the impact of errors spreading across
dependent packages in CRAN , and the influence of the target operating
system on this. Moreover because the number of packages hosted on GitHub
is growing so fast, we try to estimate how much backward incompatible
updates might impact maintainability of GitHub packages.

7.2 Methodology

As stated in the introduction, our goal is to gain a better insight in the char-
acteristics that impact the maintainability of CRAN packages, by analyzing
the errors introduced in them, and the time needed to fix these errors.

To achieve this goal we answer the three following research questions:

• RQ1: What is the source of errors in CRAN packages, and how are
these errors fixed?

• RQ2: How long does it take to fix an error?
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• RQ3: Are CRAN packages more frequently updated than GitHub
packages?

While GitHub packages don’t benefit from a daily checking process as
CRAN does, by answering RQ3 we can have an idea whether or not maintain-
ability issues related to dependencies are more problematic than for CRAN
packages.

To answer these research questions we extracted historical metadata for
all current and archived CRAN packages in April 2013, available online1. We
automated the extraction and processing of packages by implementing a set
of R tools, available online for replication purposes2. These tools download
the CRAN source packages, extract their content and store the content of
the metadata of each package (stored in a DESCRIPTION file).

Next to the metadata of each package, we also extracted content of the
CRAN package checks, on a daily basis, since September 2013. Overall, the
results reported here are based on the data extracted from 2013-09-03 to
2016-04-26. The extracted package checks report the daily status of each
package for each flavor, based on the output of R CMD check tool: OK,
NOTE, WARNING or ERROR. Packages with an ERROR status are the
most relevant, as these are the ones that will be archived upon release of the
next non-minor R version.

7.2.1 R CMD check and flavors

CRAN packages are checked using the R CMD check tool and multiple
flavors. A flavor is the combination of an operating system, a version of R, a
C compiler and hardware architecture. Because CRAN packages are checked
for each flavor, we wish to know more about the differences between these
flavors.

As seen in Figure 7.1, the different flavors on which CRAN packages
are tested vary over time. Some of them didn’t exist at the beginning of
the considered period. This is the case for the MacOS X flavors using the
development version of R. Other flavors, such as the r-release-linux-ix86
(Linux on 32 bits Intel CPU), stopped being used at some point. Finally
many flavor names were changed over time. For example the r-devel-linux-
x86_64-debian was renamed to r-devel-linux-x86_64-debian-gcc and many
flavors based on the patched versions of R were temporarily renamed to prerel
before the release of R 3.1 and 3.2.

1http://cran.r-project.org/src/contrib/
2http://github.com/maelick/extractoR
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Figure 7.1: History of the number of CRAN packages checked, on each flavor,
by the R CMD check tool

In order to avoid having to analyze many different flavors with different
periods, we grouped flavors based on their similarities. Therefore, we focus
on a subset of all flavors, keeping the more important ones. Table 7.1 list the
different flavors taken into account into the remainder of this chapter.

Flavor name Actual CRAN flavor names
devel-debian-gcc r-devel-linux-x86_64-debian

r-devel-linux-x86_64-debian-gcc
devel-fedora-clang r-devel-linux-x86_64-fedora-clang
devel-fedora-gcc r-devel-linux-x86_64-fedora-gcc
devel-osx r-devel-macosx-x86_64

r-devel-macosx-x86_64-clang
r-devel-osx-x86_64-clang

devel-windows r-devel-windows-ix86+x86_64
oldrel-windows r-oldrel-windows-ix86+x86_64
patched-solaris r-patched-solaris-x86

r-prerel-solaris-x86
release-linux r-release-linux-x86_64
release-osx r-release-macosx-x86_64

r-release-osx-x86_64-mavericks
release-windows r-release-windows-ix86+x86_64

Table 7.1: Definition of the flavor names used in this chapter.
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Figure 7.2: Evolution of the percentage of CRAN packages with an ERROR
status for the considered flavors.
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Figure 7.2 shows the evolution of the percentage of packages with an
ERROR status in each considered flavor. These figures show that both
the number of errors and the variations of this number is specific to the
considered flavor. Because we are interested in looking at the impact of
dependency relationships on package maintainability, we want to focus on
flavors for which packages are less prone to errors unrelated to dependencies.
In particular, flavors that use the development version of R are more prone
to errors introduced by changes introduced in R itself.

Moreover, as seen in Figure 7.3 and Table 7.2, the Linux flavor is the one
that is the most suited to study. Indeed, it has less errors and less variations of
errors than the Windows and MacOS X based flavors. Thus in the remainder
of this chapter, we will solely focus on the release-linux flavor.

Flavor # new # fixed # full resolution
release-linux 2203 2156 2150
release-osx 4758 4715 4690
release-windows 2417 2329 2250

Table 7.2: Number of newly introduced ERROR status, number of fixed
ERROR status and number of “fully resolved” ERROR status (ERROR
status that has been introduced and fixed) during the considered time period
for each flavor using the released version of R.
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Figure 7.3: Evolution of the percentage of available CRAN packages with an
ERROR status for flavors based on the released version of R.
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7.3 Results

7.3.1 What is the source of errors in CRAN packages,
and how are these errors fixed?

The status of a CRAN package, as reported by the daily check, may change to
an ERROR status, or may be fixed from ERROR to one of the other status
(OK, NOTE or WARNING). In Table 7.3, we identified different reasons for
such a package status change.

type description
PA Package Archived: ERROR status disappears because the

package has been archived
PU Package Update: ERROR status change coincides with

the release of a new package version
DA Dependency Archived: ERROR status appears because

one of its dependencies has been archived or can disappear
because one of its (direct or transitive) dependency has
been unarchived

DDU Direct Dependency Update: ERROR status change coin-
cides with the release of a new package version of a direct
dependency

TDU Transitive Dependency Update: ERROR status change
coincides with the release of a new version of a transitive
dependency

EF External Factors: ERROR status changed without a new
package version or a new version of any dependency

Table 7.3: Types of changes that may change the status of a package to
ERROR (or that may fix the ERROR status).

Metric PA PU DA DDU TDU EF
# introduced errors 0 99 107 519 419 1059
% introduced errors 0 4.49 4.86 23.56 19.02 48.07
# fixed errors 121 516 57 195 328 939
% fixed errors 5.61 23.93 2.64 9.04 15.21 43.55

Table 7.4: Absolute and relative number of introduced and fixed ERROR
statuses for each causes identified in Table 7.3

We computed the CRAN package dependency graph each time the ERROR
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status of a package changed. For each of these packages we computed the list of
all direct and transitive dependencies. Table 7.4 show, for each identified cause,
the absolute and relative number of ERROR status which got introduced and
fixed.

We observe that the main cause of both error introduction and resolution
is external factors. Almost one out of two errors is introduced without any
change occurring within the package or one of its dependencies. Most of the
other errors were introduced by an update of either a direct dependency or a
transitive dependency. However, when it comes to error resolution, the main
cause, which involves changes in the package or its dependencies, is package
update. While 23% of introduced errors were caused by a direct dependency
update, only 9% are fixed by it.

Metric PA PU DA DDU TDU EF
# errors caused by DDU 60 247 0 102 16 90
% errors caused by DDU 11.65 47.96 0 19.81 3.11 17.48

Table 7.5: Resolution causes of errors introduced by direct dependency.

Metric PA PU DA DDU TDU EF
# errors fixed by PU 0 41 16 247 14 197
% errors fixed by PU 0 7.96 3.11 47.96 2.72 38.25
# errors fixed by PA 0 11 14 60 3 32
% errors fixed by PA 0 11.67 9.17 50 2.5 26.66

Table 7.6: Introduction cause of errors fixed by package update and errors
fixed by package archived.

For introduced errors that were fixed during the considered period3, we
looked at both the cause of the error introduction and resolution. Table 7.5
reports how errors introduced by DDU were fixed. We see that only 20% of
the errors caused by dependency updates are fixed by dependency update.
On the other hand around half of these errors were fixed by the package
maintainer itself.

Table 7.6 reports how those fixed by PU and PA were introduced. We
see that in both cases, half of the time the error was caused by changes in
direct dependencies. This means that package maintainers need to focus
their maintenance effort on fixing errors introduced by changes in depending

3This amounts to 97.6 % of all introduced errors and 99.7% of all fixed errors in the
considered period.
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packages. Moreover, while not many errors disappear from CRAN because
the package containing it was archived, half of those packages had an error
caused by DDU.

7.3.2 How long does it take to fix an error?
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Figure 7.4: Kaplan-Meier for the probability that an error is still present after
some time based on its introduction cause.

In order to answer this question we used the statistical technique of
survival analysis to estimate the probability of an error not being fixed after
a certain amount of time. Figure 7.4 shows that errors introduced by PU or
DDU have a slightly higher probability to stay longer. However, Figure 7.5
shows that most errors are fixed very quickly, with the exception of errors
fixed by PA and PU. Errors that were fixed by PU are more likely to require
more time to be fixed. Moreover, packages with errors that can’t be fixed will
eventually be archived.

7.3.3 Which CRAN packages are more frequently up-
dated?

From Chapter 6 we know that around 50% of all GitHub packages depend on
at least one CRAN package. So how likely is it that a CRAN package gets
updated? And does this differ between packages that are required by other
CRAN packages and packages that are required by GitHub packages?
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Figure 7.5: Kaplan-Meier for the probability that an error is still present after
some time based on its resolution cause.

To respond to these questions, we use the statistical technique of survival
analysis to estimate the probability of not updating a CRAN package for a
certain amount of time. In our case, the observed event is the moment on
which an R package gets updated. The survival curve is shown in Figure 7.6
using a Kaplan-Meier estimator.

For this survival analysis we considered all CRAN package updates over
a six month period (from December 2014 to June 2015), representing a total
population of 3,740 packages. We observed that, starting from 36 days, those
packages that are at least required by GitHub packages are more likely to
be updated than the others. We confirmed this hypothesis using a one-sided
non-parametric log-rank statistical test with significance level α = 0.05. This
test compares whether the generation process of observed events of the two
populations are equal.

The null hypothesis states that both samples have identical survival and
hazard functions4. The null hypothesis was rejected with p-value = 0.03 when
comparing “GitHub only” and “CRAN only” populations, and was rejected
with p-value < 0.001 when comparing “Both” and “CRAN only” populations.

This provides statistical evidence that the population of CRAN packages
that are at least required by GitHub packages is significantly more prone to
be updated than the population of CRAN packages that are only required by
CRAN packages.

4The hazard function λ(t) is the probability that an individual having survived until
time t, it survives for an additional time dt.
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Figure 7.6: Probability that a CRAN package is not updated

7.4 Discussion

The CRAN community has identified dependency updates as a concern that
needs to be addressed:

• “One recent example was the forced roll-back of the ggplot2 update
to version 0.9.0, because the introduced changes caused several other
packages to break.” [126]

• “It is more and more of a pain if the package I’m depending on breaks.
If it is just something I was doing for fun, it’s not that big of a deal.
But if it means I have to rewrite/recheck/rerelease my R package than
that is a much bigger headache.” [99]

• “[...] If I have to load a Depends package, it adds a significant burden:
I have to check for conflicts every time I take a dependency on a new
package. With Imports, the package is free of side-effects [...]” [141]

All interviewed R package maintainers active on GitHub share this concern:

• “[...] the risk of things breaking at some point due to the fact that
a version of a dependency has changed without you knowing about it
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is immense. That actually cost us weeks and months in a couple of
professional projects I was part of.” [9]

• “A better systematic for dependency management together with making
your codebase more robust against changes in dependencies is the thing
that I actually spend most of my time cracking my brain about [...]” [9]

• “I had one case where my package heavily depended on another package
and after a while that package was removed from CRAN and stopped
being maintained. So I had to remove one of the main features of my
package. Now I try to minimize dependencies on packages that are not
maintained by “established” maintainers or by me [...]” [9]

• “There have actually been a few times when I have rewritten a function
in my own package because of that difficulty, especially with packages
that themselves have many dependencies. The biggest issue we have
is multiple layers of dependencies, some of which are on CRAN and
some of which are not. That can be difficult to keep in sync, but usually,
if your package is not on CRAN, you can just keep it using the older
dependency for a while until you have time to sort that issue.” [9]

• “It’s a bit of a hassle when your package depends on other development
versions, but there are changes in the latest version of devtools to make
this easier.” [9]

Since more and more packages are being developed and distributed outside
of CRAN , we argue that inter-repository dependency management will become
a major concern for the R community.

R package users and developers could benefit from a package installation
manager that relies on a central listing of available packages. It is definitely
feasible to achieve such a tool, since popular package managers for other
languages such as JavaScript (e.g., bower and npm) and Python (e.g., pip)
also offer a central listing of packages, facilitating their distribution through
several repositories including GitHub.

To reduce the problem of backward incompatible changes in R packages
hosted on GitHub due to CRAN package updates, package maintainers could
deploy continuous integration processes (such as Travis CI) on their Git-
Hub projects, in order to benefit from an equivalent of CRAN ’s daily R
CMD check. However, we observed that only 23.6% of the considered R
packages hosted on GitHub have defined a configuration for Travis CI. Even
with such a continuous integration process, the lack of a built-in support for
dependency constraints satisfaction in R still forces developers to react to
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all the backward incompatible changes in each dependency of their package,
even if the dependent package is stable or no more under development.

R package maintainers active on GitHub confirm the need for more sys-
tematic package dependency management: “I personally think it’s REALLY
relevant to at least be ABLE to be very specific and rigid with regard to your
dependencies. And I think the R universe could provide better tools to fit the
needs of developers and professionals out there in a better way. But in that
regard I like efforts such as Packrat and checkpoint very very much.” [9]

People from the R community have started to explore ways to improve how
CRAN and the current R package management system work together [126].
Inspired by the way in which Debian Linux and npm manage their package
distributions, two solutions are proposed. The first solution consists in
having a testing and a development branch of the CRAN distribution. The
development distribution contains the most recent but also more unstable
packages, while the testing distribution is regularly frozen in order to release
a stable snapshot of CRAN with each new version of R. While this solution
would certainly benefit CRAN , it does not solve the problems for R packages
hosted on GitHub. R package maintainers are already adopting such a solution,
but at an individual level: “Yes. I usually have a cran branch which matches
the CRAN version. A master branch (or one that I set as default) would be
the current development version. I might have some experimental branches as
well.” [9] Having standardised support for this would benefit the community
as a whole.

A second, more general, solution would consist in fundamental changes
to the way in which R installs and loads packages: each package should be
allowed to specify the version of its dependencies it requires, and provide a
way to install and load multiple versions of the a package at the same time.

7.5 Threats to Validity

Our results may be biased by limitations of the CRAN check tool and the
other extraction and measurement tools that we have developed and used. We
know that the CMD check on many R packages on CRAN results in an error
status without an update of any of their dependencies (for example, if the
language R itself or one of the base R packages evolves). This could influence
the results for packages with many dependencies, as there are potentially
more situations in which at least one dependent package gets broken at the
same time of an update of its dependency.

Our analysis relied on information extracted from Git and GitHub. Many
pitfalls should be taken into consideration when doing so [20, 84]. Some of
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them can be avoided, others are inherent to the limitations of the considered
version control systems or hosting services. For example, how should forking
be taken into account? In our analysis, we excluded all forks. We based
ourselves on the packages still existing in GitHub in June 2015. We were not
able to extract historical information from GitHub repositories that have been
removed before that date.

For R packages hosted on GitHub, we assumed that their DESCRIPTION
file always resides in the root directory of each Git repository, because this
is where functions like devtools::install_github expect packages to be located,
and because this avoided inclusion of repositories containing R code but that
are not R packages. It may, however, have led to the exclusion of some R
packages. We also found that some GitHub accounts containing R packages
(in particular, accounts cran and rpkg) actually served as partial mirrors of
CRAN , or as a mean to expose R code to GitHub. These accounts were
excluded from our analysis, but we have no guarantee that other accounts
may also be mirrors of R packages developed or distributed elsewhere.

7.6 Conclusion

With the aim to assess the maintainability of packages belonging to the CRAN
archive network, we analyzed the introduction and fixing of errors in packages.
We collected daily information from the CRAN website of the automated
check of each package for different flavors from September 2013 to April 2016.
Because some flavors are more error prone than others, we analyzed a flavor
that is less prone to errors caused by changes unrelated to changes occurring
in dependencies.

While the majority of errors appear and are resolved within a few days
without any developer intervention, the other errors requiring intervention
from the package maintainers are primarily errors introduced when a package
they rely upon was modified. Maintenance effort hence needs to be focused on
fixing errors caused by others. Moreover, those errors that stay for a longer
time, might eventually end up being archived. This may become detrimental
to package maintainability in the long run for CRAN packages.

We showed that R packages hosted on GitHub are very likely to suffer from
inter-repository dependency problems. While most of the dependencies are
provided by CRAN , many GitHub packages cannot be installed automatically
due to a lack of central listing of all available packages. We showed that
CRAN package updates cause backward incompatible changes. Because
CRAN packages that are required by GitHub packages are more prone to be
updated, this problem is potentially worse for GitHub packages. We showed
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how this problem is currently addressed on CRAN , and how it affects GitHub
packages.

While the current role of the automated error check for CRAN packages
is to inform developers about whether their package conforms to the CRAN
quality policy, we believe that R maintainers and developers could benefit
from a more specific tool giving less general information than the current
check and more information about the implications and problems raised by
dependency changes.

In order to be able to install an R package, its dependent packages
need to be available as well. While R provides an easy built-in way to
install packages, this solution, in combination with the way in which CRAN
distributes packages, is neither sufficient nor satisfactory to handle GitHub
package dependencies [126]. Through interviews with R package maintainers
on GitHub, we observed that the lack of support for dependency constraints
in R is already a major concern. Contrarily to CRAN , distributed GitHub
packages are not systematically monitored by a continuous integration process
like the R CMD check in CRAN .

Thus, the R package-based software ecosystem would strongly benefit
from an automatic package installation and dependency management tool,
like the ones that are currently available for other package-based software
ecosystems. The need for such automated tools for the R ecosystems was
relatively low a few years ago, since CRAN was, together with Bioconductor ,
the major distribution platform for R packages. Today, this is no longer the
case, since development platforms play an increasingly important role in the
distribution of R packages.
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Analyzing Code Cloning in CRAN

Packages

Code clone analysis is a very active subject of study, and research on inter-
project code clones is starting to emerge. In the context of software package
repositories specifically, developers are confronted with the choice between
depending on code implemented in other packages, or cloning this code in
their own package. This chapter presents an empirical study of identical
function clones in the CRAN package archive network, in order to understand
the extent of this practice in the R community.

Depending on too many packages may hamper maintainability as unex-
pected conflicts may arise during package updates. Duplicating functions from
other packages may reduce maintainability since bug fixes or code changes
are not propagated automatically to its clones. We study how the character-
istics of cloned functions in CRAN snapshots evolve over time, and classify
these clones depending on what has prevented package developers to rely on
dependencies instead.

This chapter is mainly inspired by a workshop paper [38] presented at the
International Workshop on Software Clones (IWSC) 2015.
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8.1 Introduction

Analyzing the impact (whether it be harmful or beneficial) of inter-project code
cloning is an emerging topic of research in the code cloning community [94,144].
Developers are often confronted with the difficult choice between depending
on existing functions developed in other libraries, or copy-pasting or re-
implementing similar functions in their own code. In the case of depending
upon a third-party library, errors may be introduced inadvertently when
upgrading to a newer version of the library one depends upon. Finding and
fixing these errors can be cumbersome. Duplicating functions across different
libraries is an alternative but may be detrimental to the maintainability in
the long run.

In this chapter, we study the extent of the practice of cloning functions
between packages contained in CRAN . Identical cloned functions across
packages appear to be omnipresent in CRAN . Many reasons can justify the
presence of these clones.

We have seen in Chapter 7 that the CRAN policy puts a heavy burden
on package maintainers, especially if their packages fail due to an update of
some dependent package over which the maintainer has no control. We know
from interviews of R package maintainers that this phenomenon happens in
practice: “Nothing that would be related to GitHub. I had one case where my
package heavily depended on another package and after a while that package
was removed from CRAN and stopped being maintained. So I had to remove
one of the main features of my package. Now I try to minimize dependencies
on packages that are not maintained by “established” maintainers or by me ;-)
Nowadays it has become a standard that PhD students in statistics develop
an R package as a byproduct of their PhD thesis. But for students who leave
academia or move to other projects it’s often a low priority if at all to maintain
their package.” [9]

Thus R package maintainers might sometimes resort to copy-and-paste
reuse to reduce the extent of this problem. Indeed, copying the code of a
function they want to reuse from another package requires less effort (at least
at the short term) than explicitly depending on that package and take the
risk that future changes in that package may lead to conflicts in ones own
package.

We also suspect that some function clones between R packages exist
because the declaration of an explicit package dependency does not allow to
access the required function. This is for example the case if the function is
local to the package, or if it is anonymous, or if it is a global function that is
not exported in the package’s namespace.
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With our study, we aim to verify whether this is really the case and how
this practice evolves over time. In particular, we are interested in Type-1
clones [18,138]. We are interested in Type-1 clones, which are syntactically
identical code fragments, because we are interested in code that is duplicated
to avoid dependencies. We want to understand to which extent functions
are cloned across packages, why R package developers clone functions, and if
clones could be avoided by the introduction of explicit dependencies. From
now on, when we use the term clone it will implicitly refer to Type-1 function
clones, i.e., functions that share the same code body. Our longitudinal
empirical study of inter-package function clones in CRAN focuses on the
following research questions:

1. How prevalent are clones in CRAN , and how does this evolve over time?

2. How and why did clones appear?

3. Is it possible to remove clones and how?

First Section 8.2 extends the conceptual framework introduced in Chapter 4
to take into account clones, introduces related metrics and describes how
we computed clones between CRAN packages. Then Section 8.3 presents
interesting observed clone cases from CRAN and answers, based on empirical
results, to the previous research questions. Finally Section 8.4 presents threats
to validity and Section 8.5 concludes.

8.2 Methodology

8.2.1 Terminology

Before answering the research questions introduced in Section 8.1, let us extend
the terminology introduced in Chapter 4 with the necessary terminology and
notations.

Each project state s ∈ State(E) is characterized by a number of function
definitions, that contain source code.

Notation 8.2.1 (Functions). Let s ∈ State(E).

• Fs is the set of all functions belonging to a project state s. A function f ∈
Fs is a triple (fargs, fbody, fenv) where fargs denotes the set of function
parameters, fbody the function body, and fenv the environment of the
function.

• FE = ∪s∈States(E)Fs denotes the set of all functions in the ecosystem E.
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• Fs = FG
s ∪ FL

s partitions all functions of Fs into local functions FL
s

(that are defined internally to another function) and global functions
FG
s .

• contains ⊆ FL
s × Fs determines inside which other function of the

project state a local function is defined.

• Fs = FN
s ∪ FA

s partitions all functions of Fs into named functions FN
s

(that have an explicit name) and anonymous functions FA
s (that do not

have an associated name).

• name : FN
s → Σ∗ : s 7→ name(s) provides the name of each named

function as a sequence of symbols belonging to some alphabet Σ.

• time : Fs → T : s 7→ time(s) provides the release time of the project
state in which a function comes from.

ReadJSONFiles <− function ( f i l e s ) {
lapply ( f i l e s , function ( f ) r j s on : : fromJSON( f i l e=f ) )

}

Figure 8.1: Example of a global and named function ReadJSONFiles which
contains a function that is both local and anonymous.

Notation 8.2.2 (Snapshots and functions). Let t ∈ T .

• F t(D) = {f ∈ Fs | s ∈ Dt} is the set of all functions in snapshot Dt

• F t
s(D) = F t(D)∩Fs is the set of all functions in project state s belonging

to snapshot Dt.

Clones may appear either within the same package, within two versions of
the same package, or belong to two different packages. Clone sets represent
groups of identical clones.

Notation 8.2.3 (Clones and clone sets). Let t ∈ T .

• Ct(D) = {(f, g) ∈ F t(D) × F t(D) | f 6= g ∧ fbody = gbody} denotes
the clone relation between functions. Let f ∈ F t(D), then we define
clonest(f) = {g ∈ F t(D) | (f, g) ∈ Ct(D)}.
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• Ct(D) forms a partial equivalence relation (i.e., it is symmetric and
transitive). The quotient set F t(D)/Ct(D) is the set of all clone sets. A
clone set C ⊆ F t(D)/Ct(D) is an equivalence class of (function) clones
defined by this partial equivalence relation Ct(D).

• For each clone set C we define its origin(s) as the function(s) repre-
senting the oldest incarnation(s) of the clone:

origin(C) = {f |∃g 6= f, (f, g) ∈ C ∧ ∀g, (f, g) ∈ C :

f 6= g ⇒ time(f) < time(g)}

While theoretically a clone set can have multiple origins, in practice this
occurs very rarely. And even if it does, these multiple origins tend to belong
to the same package version (i.e., the multiple origins are internal clones of
one another in the same package). For example, for snapshot of CRAN Dt at
date t =2014-12-01 we found exactly 1 origin package for all 3,184 detected
clone sets.

This study focuses on inter-package clones, i.e., clones across different
packages, as they are subject to the maintenance problem described in Chap-
ter 7. We will not consider clones between different versions of the same
package.

Notation 8.2.4 (Inter-package function clones).

• Ct
Inter(D) = {(f, g) ∈ Ct(D) | ∃v, w ∈ Dt : v 6= w, f ∈ Fv(D), g ∈

Fw(D)} denotes all clones between functions belonging to different pack-
ages. Like Ct(D) it forms a partial equivalence relation that allows us
to define clone sets.

• clonestInter(f,D) = {g ∈ F t | (f, g) ∈ Ct
Inter(D)}.

For example, CRAN package biotools 1.2 has one identical clone with
package soilphysics 1.1. The function body is
i f ( i s . null ( text ) )

text <− "Welcome␣ to ␣ the ␣ s t a t i s t i c a l ␣ so f tware ␣ r evo l u t i on ! "
i f ( ! inherits ( text , " cha rac t e r " ) | | length ( text ) != 1)

stop ( " ’ text ’ ␣must␣be␣a␣ charac t e r ␣ vec to r ␣ o f ␣ l ength ␣1 ! " )
vec <− s tr sp l i t ( text , "" ) [ [ 1 ] ]
lab <− c ( vec , "\n" )
for ( i in 1 : length ( lab ) ) {

setTxtProgressBar ( txtProgressBar (char = lab [ i ] ) , 0 . 0 1 )
Sys . s l e e p ( 0 . 1 )

}
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Notation Description
Fs all functions belonging to project state s

F t(D) all functions belonging to packages in snapshot Dt

F t
s(D) all functions belonging to project state s in snapshot Dt

Ct(D) all pairs of function clones for snapshot Dt

Ct
Inter(D) all pairs of external clones for snapshot Dt

Table 8.1: Summary of introduced notation

8.2.2 Metrics

In this section, we define the metrics that we will use for the empirical analysis
in Section 8.3.

Size metrics

Let t ∈ T , Dt the corresponding snapshot from a distribution D, s ∈ Dt a
project state, and f ∈ Fs a function.
LoC(f) = number of lines of code of f .
AST (f) = size of the abstract syntax tree (AST) of f . It computes the
number of nodes in the AST returned by the R function parse. This AST
is similar to a LISP AST. Each R language operator is a call to a function.
Thus all symbols that look like an operator, whether they are “for”, “function”,
“+” or the assignment operator “<-”, are treated as functions. Moreover the
enclosing curly braces (“{}”, working like in C) are also treated as functions.
Because we consider if (x == 0) x + 1 being the same code as if (x == 0) { x
+ 1 }, we simplified the AST by removing the “{” nodes.

We can define size metrics at the level of a project state as follows:
LoC(s) =

∑
f∈Fs

LoC(f) = number of lines of code of s.
AST (s) =

∑
f∈Fv

AST (f) = AST size of s.
NoF (s) =| Fs | = number of functions belonging to s.

We define size metrics at the snapshot level as follows:
NoP (t,D) =| Dt | = number of packages in snapshot Dt.
LoC(t,D) =

∑
s∈Dt

LoC(s) = lines of code for snapshot Dt.
AST (t,D) =

∑
s∈Dt

AST (s) = AST size for Dt.
NoF (t,D) =| F t |= ∑

s∈Dt
NoF (s) = number of functions in Dt.

Dependency metrics

Out(s, t,D) = out-degree of project state s = | dep(s, t,D) |
In(s, t,D) = in-degree of project state s = | revdep(s, t,D) |
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Out∗(s, t,D) = | dep∗(s, t,D) | = number of transitive dependencies of project
state s
In∗(s, t,D) = | revdep∗(s, t,D) | = number of transitive reverse dependencies
of project state s

Clone metrics

NoC(f) = | clonestInter(f) | = number of inter-package Type-1 clones of
function f in the same snapshot Dt.

Let Clones(s) = {f ∈ Fs : NoC(f) > 0} the set of function clones
contained in project state s.
NoCF (s) =| Clones(s) | = number of cloned functions of project state s.
LoCC(s) =

∑
f∈Clones(s) LoC(f) = number of lines of cloned code in project

state s.
RoCF (s) = |Clones(s)|

NoF (s)
= ratio of externally cloned functions in project state s.

RoCS(s) = LoCC(s)
LoC(s)

= ratio of cloned code in project state s.

We can aggregate these clone metrics at the snapshot level as follows.
NoCP (t,D) =| {s ∈ Dt : NoCF (s) > 0} | = number of packages containing
clones in snapshot.
NoCF (t,D) =

∑
s∈Dt
| Clones(s) | = number of cloned functions in snapshot.

NoCS(t,D) = number of clone sets of snapshot Dt = number of classes
defined by the partial equivalence relation Ct

Inter.
LoCC(t,D) =

∑
s∈Dt: NoCF (s)>0 LoCC(s) = number of lines of cloned code

in snapshot Dt.
LoCCP (t,D) =

∑
s∈Dt: NoCF (s)>0 LoC(s) = number of lines of code in all

packages containing clones.
RoCF (t,D) = NoCF (t)

NoF (t)
= ratio of external function clones.

RoCP (t,D) = NoCP (t)
NoP (t)

= ratio of packages with clones.

RoCC(t,D) = LoCC(t)
LoC(t)

= ratio of cloned lines of code.

RoCCP (t,D) = LoCCP (t)
LoC(t)

= ratio of cloned lines of code in packages containing
code.

All these metrics can be qualified by an extra parameter n representing
a minimal threshold on the function size expressed in lines of code, i.e., we
restrict the functions under consideration to {f ∈ F t | LoC(f) > n}.

If the threshold n = 0, we obtain the same values as the original metrics.
For example, RoCF (s, 10) will compute the ratio of cloned functions in

package s, taking only into account those functions that have more than 10
lines of code.

113



Chapter 8. Analyzing Code Cloning in CRAN Packages

8.2.3 Type-1 function clone extraction

To analyze the history of clones in CRAN, we have proceeded as follows
to extract and identify Type-1 function clones. First, we parsed the source
code of each version of each CRAN package using built-in R functions. More
specifically, we used the R base function parse to construct the abstract syntax
tree (AST) of the body of each function of each package. Working with the
AST allows us to ignore all code comments and differences in code indentation
between otherwise identical function bodies. Next, we computed a hash value
for each function body using the SHA-1 cryptographic secure hash algorithm.
Two functions that have the same hash value for their function body can be
considered as identical functions with a negligible probability (< 10−18) of
false positives.

For the purpose of the empirical analysis we excluded all functions whose
body contains less than 6 lines of code. Through manual inspection we found
that this value allows us to avoid most of the small code fragments leading to
“accidental clones”.

We also excluded all intra-package clones, i.e., clones that appear within
the same package. For the empirical analysis, only those clones that appear
between different packages (i.e., belonging to the clone relation Ct

Inter) are of
interest to us.

8.3 Results

8.3.1 Observed Clone Cases

Before delving into an empirical analysis, we focus on a limited subset of
“interesting” CRAN packages with respect to their cloning behavior. In
particular, we considered those packages for which there is an unusually high
number of clones, or an unusually high number of packages that have cloned
functions belonging to the considered package. The aim of this section is not
to provide a representative classification but is rather indicative about some
interesting cases of clones found in CRAN. We present these observed cases
of cloning behaviour below.

Coexisting package versions

In some CRAN snapshots, two different “versions” of the same package may
coexist. While these packages have a different name, one of them can be
regarded as the new version of the other. Needless to say, the majority of
functions from the old package will be cloned in the new package. A valid
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reason for this clone case is to allow existing packages to continue to depend
on the old version, while already exposing the new version with extended
functionality.

One occurrence of this type of clone behavior was found for packages plyr
1.8.3 and dplyr 0.4.3. They are maintained by the same person, and both
allow to manipulate R data structures more easily and more efficiently but in
a different way. They share 3 identical function clones totalling 48 lines of
code.

Another occurrence are packages lme and nlme that have coexisted for
some time. Both packages fit the same goal of providing statistical model
functions. nlme adds non-linear models to lme and actually replaced it in
later snapshots of CRAN. In April 2016 they still shared more than 600
identical function clones totalling over 7,000 lines of code.

A third example is the pair of packages np and npRmpi. The latter package
is a version of np that uses MPI (Message Passing Interface) to distribute
computation. In April 2016, both were still available on CRAN, maintained
by the same person and share more than 10,000 lines of code.

The forked package

Related to the previous case, forked packages continue to coexist with the
package they have forked from. An example is package Rcmdr, offering a
graphical interface to use R statistical functions. Package QCAGUI provides
a graphical interface for the QCA package, and can be considered as a fork of
Rcmdr with most of the statistical related features removed. In April 2016,
Rcmdr and QCAGUI shared more than 8000 lines of code.

The frequently cloned package

For some packages, most functions have been cloned by other packages. An
example is distr 2.5.3, which contains 182 lines of code, and all its global
functions have been cloned by different packages.

The utility package

We refer to an utility package as a package that bundles together a lot of
functions that are cloned from many other packages. An example is package
DescTools, which gathers functions for basic statistics that are scattered
across different packages, and bundles them together into a single package.
DescTools 0.99.15 copied 52 functions (totalling 1,419 lines of code) from 27
different packages. Some of them are public functions while others are local
functions meaning that they are probably used in wrapper functions.
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The popular package

A popular package contains specific functions that are cloned by a lot of other
packages. An example of such a package is MASS, a well-known and widely
reused statistical package. Its version 7.3-15 has 16 functions that have been
cloned by 16 different packages for a total of 180 code lines.

The popular function

A popular function is a function that is cloned by a lot of different packages,
while the other functions of the same package are not. An example is the
package combinat 0.0-8, whose function permn of 151 lines of code is cloned
by 7 different packages.

8.3.2 How prevalent are clones in CRAN?

In order to assess the importance of the cloning phenomenon across CRAN
packages we computed the snapshot for each day t from January 2000 to
December 2014. For each snapshot Dt we computed the snapshot-level metrics
related to clones.

0
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Figure 8.2: Evolution over time of NoP (t) (in blue) and NoCP (t) (in red).

Figure 8.2 shows the evolution in CRAN of the number of packages NoP (t)
and number of packages containing clones NoCP (t). The general trend is
that the number of packages containing clones increases over time, up to 2,000
packages containing clones today. This corresponds to 24.2% of all packages.
The trend follows the overall exponential growth trend of the number of
available CRAN packages.
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Figure 8.3: Evolution over time of LoC(t) (in green), LoCC(t) (in red) and
LoCCP (t) (in blue) in CRAN.

The evolution of the number of lines of cloned code LoCC(t) (Figure 8.3)
also follows an increasing trend. We observe that LoCC(t) is much smaller
than LoCCP (t), the total number of lines of code of the packages containing
these clones. The ratio amounts to 2.6% of all lines of code in CRAN and
5.3% of all lines of code of packages containing clones. This is much less
than the ratio observed in Figure 8.2 of 24.2% of packages containing clones.
Nevertheless, these cloned functions are included in packages that, together,
represent 49,7% of all lines of code in CRAN!

Figure 8.4 shows how these ratios evolve over time. The ratio RoCC(t) of
lines of cloned code decreases over time (starting from around 20% initially
to less than 5% today). The ratio RoCP (t) of packages containing cloned
code has the opposite behaviour, with a higher percentage of packages is
containing cloned code. In both cases, the ratio seems to stabilize during
the last 8 years of CRAN. We hypothesize that this is because CRAN has
become more mature.

From these findings we can conclude that

• The cloning phenomenon in CRAN impacts quite a lot of packages (up
to 25%). However it does not impact the majority of CRAN packages.

• The ratio of packages impacted by cloning appears to have stabilized.

• While cloning impacts very few lines of code compared to the overall
size of CRAN, it still impacts more than 250,000 code lines. Moreover,
those lines are included in packages that represent around 50% of all
code lines in CRAN.
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Figure 8.4: Evolution over time of RoCP (t) (in red, the ratio of packages
containing clones), RoCC(t) (in green, the ratio of cloned lines of code) and
RoCCP (t) (in blue, the ratio of lines of code in those packages containing
cloned code).

8.3.3 Why did clones appear?

We have seen previously that cloning potentially impacts hundreds of thou-
sands of lines of code. Our goal is to understand the reason of existence for
those clones and whether these clones could have been avoided.

To fulfill this goal we study in more detail snapshot Dt corresponding
to date t =2014-12-01. We limit ourselves here to those packages that are
not archived at date t. In the previous research question we did not exclude
archived packages because there is no history available online to know which
packages were archived or not at a certain point in time.

We counted NoP (t) = 6, 253 non-archived packages. The clone relation
Ct
Inter resulted in NoCS(t) = 3, 184 clone sets, involving 7,366 function

clones in NoCP (t) = 1, 409 distinct packages. In total, this amounts to
LoCC(t) = 162, 327 lines of cloned code out of LoC(t) = 8, 338, 417 in total
(i.e., < 2%).

In order to understand why these clones exist we studied origin(C), the
origin function of each identified clone set C. The origin corresponds to
the function with the oldest date, implicitly assuming that all other clones
belonging to the same clone set were copied from it. We found exactly 1
origin package for all 3,184 considered clone sets.

For the origin of each clone set, we try to answer the following questions:

• Is the origin anonymous (i.e., not stored in any variable)?
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• Is the origin declared locally (i.e., declared inside another function)?

• Is the origin available as a public function to the package users?

• Does the origin still exist in the most recently available package version?

Among the 3,184 considered origin functions (one for each clone set), we
identified 796 functions (i.e., 25%) that were either anonymous or local. 250
of these were both anonymous and local.

For the 2,388 (3,184 - 796) origin functions that were globally visible
(i.e., not local) in the origin package version, 202 (8.45% of all global origin
functions) were no longer available in the latest considered version of the same
package, either because the function has been removed or changed somehow
over time.

The current CRAN policy requires packages to define a “NAMESPACE”
file that lists which functions or objects are exported by the package. Those
exported functions are all the functions that the package user is allowed to
use1. Because NAMESPACE files can use regular expressions and because
package environments can be modified dynamically, we extracted the list of
exported objects by loading each package in a virtual machine containing a
snapshot of CRAN corresponding to the release date of the package.

Out of the 2,186 (2,388 - 202) origin functions that still existed at 2014-
12-01, we weren’t able to retrieve the list of exported functions for 287 of
them (i.e., 13%). Of the remaining 1,899 origin functions, 673 were exported
while 1,226 were not.

In summary, it turns out that, for the considered snapshot, cloning cannot
be avoided for the majority of clones in each identified clone set. Of the 3,184
origin clones, 25% (796) were local functions that cannot be depended upon
no matter whether they are exported or not by their containing package. Of
the remaining 1,899 global functions, only 35% (673) were public ones.

Figure 8.5 presents the distribution of number of lines of code LoC(f) for
each clone set origin function f . The function size varies a lot, and while most
origin functions tend to be small (less than 20 LoC for more than 50% of
them), their size can increase up to 1,000 LoC. We also observe that function
size tends to be bigger for global than for local origins, and bigger for public
clones than for private origins.

1Although, technically, it is still possible to call non-exported functions using syntactic
sugar, this is strongly discouraged by the CRAN check process.
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Figure 8.5: Beanplots showing the distribution of LoC(f) for the clone set
origins, classified according to their visibility: anonymous, local, (global)
private or (global) public.

8.3.4 Is it possible to remove clones? How?

Removing clones by adding a dependency to the origin We have
seen that it was only possible for a small fraction of the clone sets to remove
identical clones by adding a dependency to the origin function. However, we
still need to check whether this dependency already exists or if it could be
added. This dependency cannot be added if the package containing the origin
(directly or indirectly) depends on the package containing the clone, since
otherwise a cyclic dependency would be introduced.

To the previously identified 673 public (and hence, potentially refactorable)
origin functions correspond 782 clones in 332 packages. Of these, there were
49 packages with an existing direct dependency to the origin package. In
the opposite direction we found 20 packages for which their origin package
directly depends upon them and only one for which the origin package
indirectly depends upon it.

Removing clones by adding a dependency to a clone of the origin
function While the majority of clones cannot be removed by depending
upon the package that contains the origin function, perhaps a dependency
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Figure 8.6: Percentage of clone origin functions and clone origin number of
lines of code in each category.

can be added to another package containing a clone of the origin.
Let us consider the 3,458 non-origin clones of the 2,511 clone sets for

which the origin was not refactorable by adding a dependency. Is one of the
non-origin clones refactorable instead? For 801 clone sets, all non-origin clones
are all local functions, and for 194 clone sets we were not able to retrieve the
list of exported objects by the package. For the remaining global functions
for which we could retrieve exported objects, 1,266 were private functions
and only 250 were public ones.

For the 250 clone sets containing at least one public clone, there was a
total of 317 clones that could potentially be removed by adding a dependency
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to the package with this public clone. 31 already have this dependency and 18
have a reverse dependency to the package declaring the public clone, making
it impossible to add the dependency.
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Figure 8.7: Percentage of functions and lines of code in each category for
non-origin clones.

8.4 Threats to Validity

Our study has several potential threats to validity. Since we have restricted
ourselves to R packages, our results do not necessarily generalize to other
package-based systems.
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For our analysis we used mainly tools and scripts that we developed
ourselves and which could still contain bugs. We also relied on data available
on CRAN web site and some of this information could be unreliable. In
particular we cannot be sure that the release date of packages is the actual
one as it can be misestimated by a few days.

For snapshots before September 2013 there is no way of knowing which
packages were present on CRAN at that time. The history of when package
versions were archived is not available and we have to rely on data we started
to extract since September 2013.

The threshold of at least 6 code lines we have used to consider identical
functions to be clones is arbitrary and could lead to over- or underestimations
of the number of clones.

8.5 Conclusion

This chapter studied the problem of inter-project software clones from an
ecosystemic point of view. To this extent, we carried out an empirical study
of Type-1 function clones across R packages contained in the CRAN package
repository over a 15-year time period. Our goal was to understand to which
extent functions are cloned across packages, why R package maintainers clone
functions, and if clones could be avoided.

While identical cloned functions of at least 6 code lines appear to be
present in a rather small portion of the code of all packages, they still
represent hundred of thousands of lines of code. Moreover, they are present
in one out of four packages that together make up half of all CRAN code.

We were able to identify an important number of clones that could theo-
retically have been avoided by introducing explicit dependencies to another
package containing the function clone. Only in very few cases it was not
possible to add such a dependency because it would give rise to a cyclic
dependency.

We also found valid reasons why cloned functions appeared. In the
majority of cases, cloning could not be avoided because the original function
being cloned was local or private. This made it technically impossible to
reuse the function by simply depending upon the package defining it.

Hence, the problem of identical cloned functions in CRAN appears to be
less problematic than what one could expect at first. Nevertheless, we believe
that R package maintainers still lack information about, and could benefit
from, feedback on the presence of clones in their package and dedicated tools
to help them deal with it.
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maintaineR: a Dashboard for

Analyzing Maintainability Issues

The R development community maintains thousands of packages through
multiple package repositories. Its two most popular repositories, CRAN and
GitHub, are totaling almost 20 thousand different packages. The growth
and evolution of these archives makes it more and more difficult to maintain
packages and their inter-dependencies, and the existing tools that aim to
help developers in this process no longer suffice. We propose maintaineR, a
web-based dashboard that allows CRAN and GitHub package developers to
understand and deal with the implications and problems raised by package
updates. The dashboard complements existing analysis tools by providing
additional support such as the visualization of package dependencies and
reverse dependencies, cross-package function clones, and so on.

This chapter is mainly inspired by a conference paper [36] presented at
the ICSME 2014 conference.



Chapter 9. maintaineR: a Dashboard for Analyzing Maintainability Issues

9.1 Introduction

Many generic web-based dashboards exist to help developer communities with
specific maintenance activities. For dedicated software developer communities
involved in a specific software ecosystem (including specific programming
languages, development processes tools, guidelines, rules and hardware infras-
tructure), targeted web-based dashboards are however not always available,
or need to be extended to accommodate the specific needs of developers.

In this chapter we present maintaineR, a dashboard focused towards the
R project community. In Chapters 6, 7 and 8, we showed that the number of
available packages on CRAN and GitHub is growing rapidly and that package
maintainers face issues with package maintenance. In addition, limitations of
R’s dependency versioning system have been reported and possible directions
for improvement (such as staged package distributions and versioned package
management) have been proposed [126].

Therefore, there is a need for more specific tools dedicated for R package de-
velopers, that allow them to gain insight in, and deal with, the implications and
problems raised by dependency updates and dealing with multiple repositories.
We developed maintaineR, a web-based dashboard to alleviate the above prob-
lems. It can be downloaded from http://github.com/maelick/maintaineR,
together with clear installation instructions. maintaineR is more specific and
fine-grained than what is currently available to CRAN maintainers. It helps
them to identify and avoid problems that could break their own package or
those of others. The tool is based on a fine-grained function-level analysis
of dependencies, conflicts and clones (copy-paste reuse of code) between
packages.

Several tools have been proposed to analyze, understand and visualize
software ecosystems and their evolution. For example, Neu et al. [123]
developed Complicity, a web-based application aiming to support software
ecosystem analysis through interactive visualisations. Perez et al. [128]
presented SECONDA, a software ecosystem analysis dashboard.

Many generic web-based tools are available that provide insight in the
evolution of software products by analyzing historical data extracted from
version control repositories using a combination of metrics, visualization
and statistics. Well-known examples of these are SonarQubeTM (http://
www.sonarqube.org) that provides an extensible open source platform for
managing code quality, and GitHub that includes a variety of views on the
version control activity of ongoing projects, including network visualizations
and historical visualizations. The main difference is that maintaineR offers
dedicated support for CRAN , taking into account the specificities of the R
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language and the processes and tools used by CRAN package maintainers.
Section 9.2 presents the dashboard’s main architecture, and the R packages

that have been developed and reused for creating it. Section 9.3 presents the
tool itself and finally Section 9.4 concludes.

9.2 Overall architecture

Since maintaineR targets R maintainers, its implementation relies mainly on
R technologies and CRAN packages.

Figure 9.1 presents the overall architecture of the tool, which is divided in
two parts. The back-end (left part of figure) fetches, processes and writes data
to a database. It serves the purposes of retrieving packages from CRAN and
GitHub, processing them and storing the result of large computations inside
a database. The front-end (on the right) consists of a Shiny web application.
It is used to render and control data queried from the database.

Figure 9.1: Overall architecture of the components required for the web-based
dashboard. Rectangles represent R packages and circles other tools. Grey
elements represent tools developed ourselves; white ones are third-party tools.

The back-end contains different components. Package metadata and
content have been extracted with extractoR1, a bundle of R packages we
initially developed for the purpose of empirically analyzing R packages. We
implemented a package sourceR2 to manipulate R code, and more particularly
find duplicate code. We enabled extractoR to run sourceR on R packages.
The back-end relies on multiple existing R packages. RCurl, XML, rjson are
used to fetch and parse web content. hash is used to compute SHA-1 hashes
for Type-1 clone detection. Finally git is used to fetch and browse the history
of GitHub repositories containing R packages.

1https://github.com/ecos-umons/extractoR
2https://github.com/ecos-umons/sourceR
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The front-end is a web-based dashboard3 built using Shiny 4, a web
application framework for R, and shinydashboard 5, an extension of Shiny to
make web dashboards. For graph manipulations we used the package igraph.
For visualization inside the dashboard we used packages timeline and rCharts,
which relies on the d3.js Javascript library.

9.3 Tool presentation

Executing the Shiny web application opens in a web browser the page http:
//127.0.0.1:3000, where 3000 is replaced by the port number on which
Shiny runs. A list of all available R packages appears (as shown in Figure 9.2),
and selecting one of these will get the user to a package view. This view is
divided in five tabs:

Figure 9.2: Screenshot of the package selection view.

Summary shows a table containing the content of the package’s DESCRIP-
TION file.

History shows the release history of the package, its dependencies and/or
its reverse dependencies.

3https://github.com/ecos-umons/maintaineR
4http://shiny.rstudio.com
5https://rstudio.github.io/shinydashboard/
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Dependencies shows the list or the graph of all dependencies and reverse
dependencies of a package.

Namespace shows the content of the namespace of the package.

Clones displays all function clones that are present in other R packages.

9.3.1 Historical view

Figure 9.3: Screenshot of the History view for release of package abc (version
2.1) and its dependencies on CRAN .

An example of the historical view is given in Figure 9.3. By default, it
shows the release dates of the package on a timeline. As shown in Figure 9.3 it
is possible to restrain the timeline to a shorter period and to add dependencies
to and reverse dependencies from other packages. When a dependency is
available both on CRAN and GitHub, the dashboard prioritizes by default the
one available in the same source as the current package. It is however possible
to specify which package source to prioritize (“dependency source priority” in
Figure 9.3) or show packages from all sources (“all sources” in Figure 9.3).
The ability to visualize globally the history of release dependencies is useful
for a developer in order to spot recent changes when the package encounters
an error.
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Figure 9.4: Dependency list view of dependencies of package abc (2.1)

Figure 9.5: Dependency graph view of the dependencies of package abc
(version 2.1), visualized as a Sankey diagram.
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9.3.2 Package dependency

The package dependency list view (seen in Figure 9.4) and package depen-
dency graph view (seen in Figure 9.5) allows the visualization of package
dependencies and reverse dependencies. Reverse dependencies show the pack-
ages that depend on a given package and allow a package maintainer to know
who depends upon her package, and eventually help him minimize the ripple
effect of any changes he desires to make.

Ideally, a package update should not require updates or changes to packages
that depend on it. Showing to the maintainer the dependencies and reverse
dependencies of a given package, may help her find the causes of any errors
introduced by package dependencies, as well as warn her about potential
errors or conflicts introduced by this package in its reverse dependencies.

Similar to the historical view, the dependency view prioritizes dependency
based on the “dependency source priority” option.

9.3.3 Namespaces

R resolves function and variable names using environment objects, which are
hash tables associating names to objects exported by the package namespace.
When a variable or a function is referenced, the interpreter cycles through
a list of environments. When two packages define the same function name,
the last imported function will mask the first imported one. Although it is
still possible to call the first function by specifying the package name with a
special notation, this can lead to conflicts. For example, suppose that package
A depends on packages B and C and uses a function f defined in B. If a new
version of package C introduces a new function with the same name f, there
is a chance that this creates a conflict.

Figure 9.6: Namespace view for the CRAN package abc (version 2.1).
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Figure 9.7: Conflict view for the CRAN package abc (version 2.1).

Figure 9.6 shows the Namespace view for a package, displaying objects,
such as functions or methods, imported and exported by the package. Addi-
tionally it displays the potential conflicts introduced with (particular versions
of) other packages.

9.3.4 Function clones

Figure 9.8: Clones view for the CRAN package gtools (version 3.5.0),
filtered to show only clones of at least 6 lines and the last version of each
package that were available when gtools 3.5.0 was released (2015-05-29).

The Clones view, displayed in Figure 9.8, determines which global or
local functions defined in the package are perfect duplicates (so-called “Type 1”
clones) of a function defined in another package. The user interface allows to
display only clones that correspond to the last available version of packages.
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9.4 Conclusion

We presented maintaineR, a web-based dashboard for analyzing maintain-
ability of R packages, by offering visualization and the results of analyses
of the package release history, package dependencies, package namespace,
potentially conflicting function names across packages, and identical function
clones.
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Conclusion

In this chapter we summarize the contributions presented in this dissertation.
We present the characteristics an ecosystem needs to have in order to replicate
each studies presented in Chapters 5, 6, 7 and 8, and compare the result with
ours. We also sum up the other limitations of our approach for designing our
conceptual framework from Chapter 4, and for conducting empirical analyses
in Chapters 5, 6, 7 and 8. Finally we present future research opportunities
opened by the contributions of this dissertation.



Chapter 10. Conclusion

10.1 Contributions

In Chapter 1 we presented the research context and the research goal of this
dissertation. In that chapter we defined the following research goals:

1. To define a conceptual framework in order to be able to extract data from
different component repositories, analyze it to study maintainability
issues, and interpret the results.

2. To understand dependency relationships between components and how
to better deal with them.

3. To develop tools to support developer and user communities of component-
based software ecosystems.

After exploring the state of the art in Chapter 2, we defined in Chapter 4
a terminology to facilitate the study of the two package-based ecosystems, the
R and Debian ecosystems, used as case studies and presented in Chapter 3.
We also presented in Chapter 4 the general methodology to extract data from
package repositories, analyze it and produce results.

Subsequent chapters focused on the second research goal. We carried out
one empirical analysis on the Debian ecosystem in Chapter 5 and three on
the R ecosystem in Chapters 6, 7 and 8.

We empirically analyzed the evolution of strong conflicts among Debian
packages for 10 years of available history for the i386 architecture. We showed
that Debian maintainers make a specific effort to reduce strong conflicts as
much as possible, which must be accepted only when they describe component
incompatibilities that cannot be otherwise eliminated.

Using the statistical technique of survival analysis, we found that

• in general the presence of strong conflicts does not impact the lifetime
of a package . . .

• . . . but packages that are always in strong conflict have a smaller survival
probability than those who are not;

• the longer a package has survived without strong conflicts , the less likely
it is that a strong conflict will appear;

• strong conflicts that are already present upon package introduction tend
to stay present much longer than strong conflicts that appear later;

• half of the strong conflicts that appear after package introduction stay
a short amount of time (< 1 month).
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Using metrics related to the presence, amount and duration of strong
conflicts, we could identify several packages that have been reported as
problematic by the Debian community in the past. We have shown how
various of these issues would have been prevented by using recently developed
tools, but several issues spotted by our metrics are not captured by any
existing tool. This is a strong motivation for introducing these metrics in the
future into the repository quality assurance process. Moreover, the simplicity
of our metrics makes them easily transposable to other package repositories
for which direct conflict relationships are defined.

We studied the general structure of the R ecosystem by considering its
major package repositories: CRAN , Bioconductor , R-Forge and GitHub.
In total, we analyzed the origin and the dependencies of more than 12,000
packages that were available in March 2015.

We observed that CRAN , the official R package distribution, is the
center of the ecosystem and that other package repositories mainly require
CRAN packages. On the other hand we observed that GitHub is becoming
increasingly used as a collaborative development platform for R packages,
both for packages already distributed on CRAN and BioConductor, as well
as for new packages that do not have any counterpart in the considered
distributions or forges. This increased use of GitHub does not seems to have
any positive or negative effect on the growth of CRAN or BioConductor.

While GitHub packages distributed on CRAN tend to be older than those
that are not, their age cannot fully explain whether or not they are distributed
through CRAN . Additionally, many R package developers make use of GitHub
as a distribution platform. Their packages contain instructions to be installed
from GitHub, and are often exclusively distributed through GitHub.

With the aim to assess the maintainability of R packages we collected daily
information from the CRAN website of the automated check of each package
for each flavor. We observed that some packages are more error prone than
others on specific operating systems such as MacOS X and Solaris. These
systems have a high number of packages with errors that are introduced by
the developers of the package itself when they release it. For the Windows
and Linux operating systems, an important fraction of errors were unrelated
to any change in the code of the package itself or any package dependency.

The majority of errors are resolved within a few days without any developer
intervention. The errors that need to be fixed by the package developers are
primarily errors introduced when a package they rely upon was modified. This
means that package updates often cause backward incompatible change in
dependent packages and that maintenance effort hence needs to be focused on
fixing errors caused by others. While we couldn’t conduct the same analysis
on GitHub packages because of the lack of results for a similar checking
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process, we hypothesize this problem is potentially worse for GitHub packages
because CRAN packages that are required by GitHub packages are more
prone to be updated than other CRAN packages.

Finally we studied the problem of inter-project software clones from an
ecosystemic point of view in CRAN packages. While identical cloned functions
of at least 6 lines of code appear to be present in a rather small portion of
the code of all packages, they represent hundred of thousands of lines of code.
Moreover, they are present in one out of four packages that together make up
half of all CRAN code.

While the majority of inter-package function clones couldn’t have been
avoided by relying on a simple dependency relationships, there are still tens
of thousands lines of code that could be removed using dependencies.

In summary we gained the following general insights on maintainability
issues in component-based software ecosystems:

• The presence of strong conflicts has a higher chance of impacting a
package lifetime if it appeared when the package was introduced in the
ecosystem and when this conflict cannot be fixed.

• Conflicts take more time to be fixed when they are introduced at the
same time as the package.

• Using simple metrics, a historical analysis of strong conflicts between
packages reveal problems not detected by existing tools.

• Backward incompatible updates are responsible for the majority of
errors that require an update of the package to be fixed.

• Inter-project clones are sometimes a necessity and cannot always be
removed by relying on dependencies.

Finally we presented in Chapter 9 maintaineR, a web-based dashboard
for supporting R package maintainer, by offering visualizations and the
results of analyses of the package release history, package dependencies,
package namespace, potentially conflicting function names across packages,
and identical function clones. Contrary to existing tools available to the R
community, this dashboard allows to do these visualization both on CRAN
and GitHub packages.

10.2 Generalizability

One of the major limitation of this thesis is the potential lack of generalization
of the results. Indeed, for each of the empirical studies, we restricted ourselves
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to a single case study: Debian for Chapter 5 and R for Chapters 6, 7 and 8.
Therefore these studies needs to be reproduced on other component-based
software ecosystems to assess whether our findings can be generalized [50]. A
possible future topic of research would be trying to generalize the results to
other component-based software ecosystems.

While the conceptual framework presented in Chapter 4 aims at facilitating
reproduction of our experiments on other ecosystems, constraints that could
prevent such replication study. For example dependency relationships are
defined as conjunction of packages but don’t currently allow using disjunctions
of packages. The framework was sufficient for the study of Debian because
we relied on an external tool to our framework to compute strong conflicts
between packages.

It would be interesting to study other ecosystems, and compare the
differences and similarities with our results. We present here the different
characteristics that a component-based software ecosystem needs to have in
order to replicate our studies and compare results with the ones we obtained.

For example, the study conducted in Chapter 5 should be replicated on
other Linux distributions such as Fedora and Ubuntu. One good candidate to
replicate the studies on R would be the Perl modules available on CPAN 1 and
GitHub. Like CRAN , CPAN is a long-lived repository containing thousands
of software components. While it is older and contains more modules than
CRAN contain packages, it does not have a policy as strong as CRAN .
Replicating our studies on this ecosystem and comparing results could give
insights on how a strong policy, like CRAN ’s, influence maintainability issues.

Replicating the historical study of co-installability issues The repli-
cation on another ecosystem of the study of Chapter 5 requires to have access
to daily snapshots of available components and strong conflicts between them.
In order to compare the results, each snapshot must contain only one version
of each package. Moreover, the information on strong conflicts should ideally
be computed using the coinst tool. This is possible if components of the target
ecosystem have the following characteristics:

• A name to uniquely identify the component;

• Version tags to uniquely identify the different versions of the compo-
nent;

• The period of availability of each version in order to compute the
daily snapshots;

1http://www.cpan.org/
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• A list of dependencies, defined as a conjunction of disjunction of
component names, with optional version constraints;

• A list of conflicts, defined as a conjunction of component names, with
optional version constraints.

Replicating the study of the topology of the R ecosystem While
many results presented in Chapter 6 are very specific to the R ecosystem, the
study could be replicated on any component-based ecosystem with different
repositories or distributions. The replication would be possible if components
of the target ecosystem have the following characteristics:

• A name to uniquely identify the component;

• Version tags to uniquely identify the different versions of the compo-
nent;

• The period of availability of each version;

• A list of dependencies, defined as a conjunction of component names.

Replicating the study of the maintainability issues The replication
on another ecosystem of Chapter 7, requires the target ecosystem to have
a daily checking process of all packages similar to R CMD check. More
specifically, each component of the target ecosystem needs to have the following
characteristics:

• A name to uniquely identify the component;

• Version tags to uniquely identify the different versions of the compo-
nent;

• The period of availability of each version in order to compute daily
snapshots;

• A period of error state of each version, in order to identify when a
version is broken;

• A list of dependencies, defined as a conjunction of component names.
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Replicating the study of inter-package clones The replication on an-
other ecosystem of the study of Chapter 8, requires the target ecosystem to
have component with the following characteristics:

• A name to uniquely identify the component;

• Version tags to uniquely identify the different versions of the compo-
nent;

• The period of availability of each version;

• A list of dependencies, defined as a conjunction of component names.

Moreover, components need to contain code defined in a single program-
ming language with reusable code fragments. A code fragment is reusable
if the programming language provides a way to easily call it. While most
programming languages have such code fragments, the paradigm of the pro-
gramming language could create some differences in the results or their
implications. For example it might be more difficult to reuse a method in
another context than a function.

In addition, it should be possible to efficiently identify all identical code
fragments across all components of the ecosystem. In order to compare
the results with those of Chapter Chapter 8, the programming language of
these code fragments should also provide some modularity mechanism in
order to restrict the scope of the reusable code fragments, such as private and
public functions or methods.

10.3 Limitations

In Chapters 5, 6, 7 and 8, we listed the different threats to validity of the
results of the empirical study conducted. In this section we present what we
believe are the major limitations of the approach followed in this dissertation
to study maintainability issues in component-based software ecosystems.

10.3.1 Package extraction

For all empirical studies presented in this dissertation, we relied on package
data or meta-data available from online repositories or archives. The first
major limitation of our approach is the reliability of these repositories and
archives.
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For the Debian case study we used daily snapshots of package meta-
data that are available in Debian archives2. While the availability of these
snapshots gives a reliable source of information to know which packages were
available or not at a given point in time, these snapshots are not available
before March 2006. However we believe that the last 10 years of history are
sufficient to obtain significant results.

While CRAN packages are supposed to never be removed and only
archived, we have noticed a few packages or package versions that have
disappeared over time since we started extracting CRAN packages in Septem-
ber 2013. Even though we have extracted daily snapshots of non-archived
CRAN packages, they are limited to a period beginning in September 2013.
Moreover there is no public archive of such snapshots.

GitHub packages suffer from even more issues regarding package extraction.
There is no list of all publicly available R packages hosted on GitHub. We
tried to build such a list using both GithubArchive3 and the official GitHub
API4 to first get the list of all GitHub repositories.

Despite GithubArchive containing a list of the daily events of all GitHub
repositories, it is not exempt from missing data. Although using GitHub
API might be more reliable to list all currently available GitHub repositories,
it can’t be used to get the ones that have been removed. In both cases,
these approaches only give a list of GitHub repositories tagged with the R
language. Repositories tagged with no or another language might also contain
R packages. We considered as a R package the repositories that contain a
DESCRIPTION file at the root of the latest version of their master branch.

This approach only allows to accurately measure the number of R packages
available on GitHub for the date of extraction. Computing the number of
packages available for previous points in time might result in an under-
approximation of the actual value.

We know that there are packages that are completely ignored using this
methodology because they are contained in a sub-directories of their GitHub
repository. This is the case for extractoR, the package we developed for
extracting data from R packages. This is also the case for package feather 5
that is contained in the “R” sub-directory of its GitHub repository. Moreover
its repository is tagged with the C++ language as it also contains Python
and C++ code.

It is important to note that there are two major reasons for not listing
packages in sub-directory. First there were more than 140,000 non-forked

2http://snapshot.debian.org/archive/debian
3https://www.githubarchive.org/
4https://developer.github.com/v3/
5https://github.com/wesm/feather
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GitHub repositories tagged in April 2016. It is impractical to check for sub-
directories either by directly making requests to GitHub, or by cloning all
repositories and searching for DESCRIPTION files on disk. Secondly there are
many R repositories that contain scripts and copies of the packages required
by those scripts. Thus listing all R packages included in sub-directories would
highly over-estimate the actual number of R packages hosted on GitHub.

10.3.2 Identifying distributed GitHub R packages

For all identified R packages we checked whether they were ready for release by
verifying the presence of a README file with specific installation instructions.
Although a manual verification did not reveal any false positives, there may
have been false negatives that we have not considered.

More importantly we identified packages that contained installation in-
structions, such as calls to the install_github function from package devtools.
Because devtools is a development tool, it doesn’t mean that a package
README providing such installation instructions is ready for production.
Identifying packages that are considered ready for production by their de-
velopers is something not obvious, even for a human being. One solution to
check for this would be asking to the package maintainer.

10.3.3 Identifying errors in R packages

In Chapter 7 we identified errors in packages relying on snapshots of results
of the official R CMD check tool used on CRAN . We know that many
errors appear or disappear without any change in the package or one of its
strong dependencies. This could influence the results for packages with many
dependencies. Indeed such an error could be introduced or fixed at the same
time as an update of the package or one of its transitive dependencies.

10.4 Future Work

Our work can be extended in multiple ways but can also lead to further
research topics. In this section we first present how the empirical analysis
conducted in previous chapters could be extended. Then we give directions
on how the tools we developed in the context of this thesis could be extended.
Finally we give possible research directions based on the results from the
empirical studies of this thesis.
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10.4.1 Empirical study extension

We confirmed our findings on the problems of maintainability of R packages
by conducting e-mail interviews [114] with a few R package developers who
maintain packages on GitHub. However these results are not necessarily
representative of the entire community. It is not clear how these problems
are currently perceived and addressed by developers and maintainers of R
packages. One possible extension of the study from Chapter 7 is a more
extensive survey to get better insight in the use of GitHub as a package
distribution platform and its impact on the R ecosystem.

Similarly, in Chapter 8, we studied the presence of Type-1 function clones
across CRAN packages in an objective way. Our findings would benefit
from performing a subjective survey with actual R package maintainers. In
particular, we wish to know to which extent they are aware of cloning behavior
and purposefully resort to the practice of code cloning, and if they perceive
the presence of clones as something good or bad.

Related to Chapter 8, we only considered Type-1 clones. A direct extension
would be to consider Type-2 clones as well. For example, it would be
interesting to find out whether Type-1 clones become Type-2 clones, and how
long it takes. The same could be done with Type-3 clones.

10.4.2 Tooling

While in Chapter 5 we studied the evolution of strong conflicts in Debian
and proposed a simple way of detecting problems related to them using a
historical analysis, we did not provide an actionable tool to support the
Debian community.

The different techniques employed in this study may be aggregated into a
metrics-based dashboard targeted to Debian package maintainers and users.
It could also be replicated for all supported architectures, besides the i386
we studied here, and integrated into a platform such as Debsources, that has
been specifically created to analyze and reason about the evolution of the
Debian distribution [28].

Similarly, maintaineR does not integrate some of the results presented in
this dissertation. For instance it does not report anything about the R CMD
check result evolution. It could also be extended with information from other
package repositories such as Bioconductor .

Finally our work on clone detection in R packages could lead to a general
clone detection and refactoring tool for R. sourceR, the R package we developed
to identify inter-package Type-1 function clones is currently a first step in
that direction. Indeed it is able to detect such clones between two packages,
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inside a single package or inside any piece of R code such as a script. sourceR
could be extended in three different directions. First it could easily propose
a way to automatically remove the clones found by adding the appropriate
dependencies between packages. Secondly it could be extended to detect
Type-1 clones that are not functions. Finally it could also be extended to
detect Type-2 and Type-3 clones.

10.4.3 Future topics of research

The interviews with R developers revealed that the lack of dependency
constraints on R packages can be problematic. While this problem can’t
be solved without implication from the official maintainers of R itself, one
possible direction could be automatically generating such constraints based
on static code analysis.

Being able to generate such constraints could be used as the basis for
future research studies on the R ecosystem. It could be used as a proxy to
measure the quality of a package and assess how reliable the package is, i.e.,
how easily it can be installed or reused depending on the distribution it comes
from.

R package meta-data does not allow to declare and take into account
conflict relationships, strong conflicts could appear because of dependency
constraints. Moreover incompatibilities between packages could also appear
at run-time. Extending our conceptual framework to take into account those
dependencies and constraints would allow to study strong conflicts in the R
ecosystem.

Another possible research topic is the study of archived packages on
CRAN . Using the daily snapshots of available packages on CRAN , it should be
possible to see how often archived packages are taken over by a new maintainer,
whether their development continues actively on another development forge
like GitHub, or whether they simply stay inactive.

In this thesis we focused on technical aspects of maintainability issues in
component-based software ecosystems. Another future research track concerns
a socio-technical analysis of these maintainability issues. Previous research
have conducted in this topic and in particular in the Ruby ecosystem [145].
Package author and maintainer information could be used to carry out a socio-
technical analysis of the ecosystem. Similarly, other data sources pertaining
to package development could be used, such as mailing lists, issue trackers,
activity on Q&A websites such as Stack Overflow, download statistics, and
many more.

These additional data sources would allow us to answer a whole range of
new questions such as the followings. How does social interaction influence
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strong conflicts between components? Are backward incompatibilities more
likely to appear between packages maintained by different people? Do we
observe similarities in terms of cloning behavior inside packages maintained
by the same person? Is cloning more frequent between packages developed by
the same persons? How much overlap exists between communities such as
GitHub and CRAN ?

Finally, we wish to study the impact of maintainability issues on repro-
ducible research. Because it is first a language for statistical analysis and
data manipulation, R is often used by researchers for data analysis. There
exist repositories containing reproducible research results containing R code
such as the R-Journal6. We could use the tools we developed and the insight
we gained on maintainability issues to check whether or not the code included
in the R-Journal is really reproducible and does not encounter errors over
time. Moreover we could asses whether these problems can be avoided by
ongoing initiatives to facilitate R package management and producing repro-
ducible results. Examples are the Drat R Archive Template7, the Managed R
Archive Network 8, the Reproducible R Toolkit9, that provides an R function
checkpoint, which ensures that all of the necessary R packages are installed
with the correct version; and packrat, a portable and reproducible dependency
management system for R projects.

6https://journal.r-project.org/
7https://github.com/eddelbuettel/drat
8http://mran.revolutionanalytics.com/packages
9http://projects.revolutionanalytics.com/rrt
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